BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 9342873)

  • 1. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity.
    Jordan ET; Marita JM; Clough RC; Vierstra RD
    Plant Physiol; 1997 Oct; 115(2):693-704. PubMed ID: 9342873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The serine-rich N-terminal domain of oat phytochrome a helps regulate light responses and subnuclear localization of the photoreceptor.
    Casal JJ; Davis SJ; Kirchenbauer D; Viczian A; Yanovsky MJ; Clough RC; Kircher S; Jordan-Beebe ET; Schäfer E; Nagy F; Vierstra RD
    Plant Physiol; 2002 Jul; 129(3):1127-37. PubMed ID: 12114567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The amino-terminus of phytochrome A contains two distinct functional domains.
    Jordan ET; Cherry JR; Walker JM; Vierstra RD
    Plant J; 1996 Feb; 9(2):243-57. PubMed ID: 8820609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase in biological activity.
    Stockhaus J; Nagatani A; Halfter U; Kay S; Furuya M; Chua NH
    Genes Dev; 1992 Dec; 6(12A):2364-72. PubMed ID: 1459458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotiana plumbaginifolia hlg mutants have a mutation in a PHYB-type phytochrome gene: they have elongated hypocotyls in red light, but are not elongated as adult plants.
    Hudson M; Robson PR; Kraepiel Y; Caboche M; Smith H
    Plant J; 1997 Nov; 12(5):1091-101. PubMed ID: 9418050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings.
    Emmler K; Stockhaus J; Chua NH; Schäfer E
    Planta; 1995; 197(1):103-10. PubMed ID: 7580859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity.
    Cherry JR; Hondred D; Walker JM; Keller JM; Hershey HP; Vierstra RD
    Plant Cell; 1993 May; 5(5):565-75. PubMed ID: 8518556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor.
    Boylan M; Douglas N; Quail PH
    Plant Cell; 1994 Mar; 6(3):449-60. PubMed ID: 8180501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequences within both the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation.
    Clough RC; Jordan-Beebe ET; Lohman KN; Marita JM; Walker JM; Gatz C; Vierstra RD
    Plant J; 1999 Jan; 17(2):155-67. PubMed ID: 10074713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light.
    Kneissl J; Shinomura T; Furuya M; Bolle C
    Mol Plant; 2008 Jan; 1(1):84-102. PubMed ID: 20031917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nuclear localization signal and the C-terminal region of FHY1 are required for transmission of phytochrome A signals.
    Zeidler M; Zhou Q; Sarda X; Yau CP; Chua NH
    Plant J; 2004 Nov; 40(3):355-65. PubMed ID: 15469493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome A is an irradiance-dependent red light sensor.
    Franklin KA; Allen T; Whitelam GC
    Plant J; 2007 Apr; 50(1):108-17. PubMed ID: 17346261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of expression system on chromophore binding and preservation of spectral properties in recombinant phytochrome A.
    Gärtner W; Hill C; Worm K; Braslavsky SE; Schaffner K
    Eur J Biochem; 1996 Mar; 236(3):978-83. PubMed ID: 8665921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPA1, a component of phytochrome A signal transduction, regulates the light signaling current.
    Baumgardt RL; Oliverio KA; Casal JJ; Hoecker U
    Planta; 2002 Sep; 215(5):745-53. PubMed ID: 12244439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine 206 in Arabidopsis phytochrome A is the major site for ubiquitin-dependent protein degradation.
    Rattanapisit K; Cho MH; Bhoo SH
    J Biochem; 2016 Feb; 159(2):161-9. PubMed ID: 26314334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of functional oat phytochrome A in transgenic rice.
    Clough RC; Casal JJ; Jordan ET; Christou P; Vierstra RD
    Plant Physiol; 1995 Nov; 109(3):1039-45. PubMed ID: 8552709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide.
    Lapko VN; Jiang XY; Smith DL; Song PS
    Biochemistry; 1998 Sep; 37(36):12526-35. PubMed ID: 9730825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways.
    Monte E; Alonso JM; Ecker JR; Zhang Y; Li X; Young J; Austin-Phillips S; Quail PH
    Plant Cell; 2003 Sep; 15(9):1962-80. PubMed ID: 12953104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Up-regulation by phytochrome A of the active protochlorophyllide, Pchlide655, biosynthesis in dicots under far-red light.
    Sineshchekov V; Belyaeva O; Sudnitsin A
    J Photochem Photobiol B; 2004 Mar; 74(1):47-54. PubMed ID: 15043846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometric characterization of oat phytochrome A: isoforms and posttranslational modifications.
    Lapko VN; Jiang XY; Smith DL; Song PS
    Protein Sci; 1999 May; 8(5):1032-44. PubMed ID: 10338014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.