BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9343391)

  • 1. Constitutive expression, not a particular primary sequence, is the important feature of the H3 replacement variant hv2 in Tetrahymena thermophila.
    Yu L; Gorovsky MA
    Mol Cell Biol; 1997 Nov; 17(11):6303-10. PubMed ID: 9343391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent evolutionary origin of histone H3.3-like variants of animals and Tetrahymena.
    Thatcher TH; MacGaffey J; Bowen J; Horowitz S; Shapiro DL; Gorovsky MA
    Nucleic Acids Res; 1994 Jan; 22(2):180-6. PubMed ID: 8121802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition and function of histone H3 variants in Tetrahymena thermophila.
    Cui B; Liu Y; Gorovsky MA
    Mol Cell Biol; 2006 Oct; 26(20):7719-30. PubMed ID: 16908532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential and nonessential histone H2A variants in Tetrahymena thermophila.
    Liu X; Li B; GorovskyMA
    Mol Cell Biol; 1996 Aug; 16(8):4305-11. PubMed ID: 8754831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Either of the major H2A genes but not an evolutionarily conserved H2A.F/Z variant of Tetrahymena thermophila can function as the sole H2A gene in the yeast Saccharomyces cerevisiae.
    Liu X; Bowen J; Gorovsky MA
    Mol Cell Biol; 1996 Jun; 16(6):2878-87. PubMed ID: 8649398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The H1 phosphorylation state regulates expression of CDC2 and other genes in response to starvation in Tetrahymena thermophila.
    Dou Y; Song X; Liu Y; Gorovsky MA
    Mol Cell Biol; 2005 May; 25(10):3914-22. PubMed ID: 15870266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription in vitro of Tetrahymena class II and class III genes.
    Larsen LK; Kristiansen K
    J Biol Chem; 1995 Mar; 270(13):7601-8. PubMed ID: 7706308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust inducible-repressible promoter greatly facilitates gene knockouts, conditional expression, and overexpression of homologous and heterologous genes in Tetrahymena thermophila.
    Shang Y; Song X; Bowen J; Corstanje R; Gao Y; Gaertig J; Gorovsky MA
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3734-9. PubMed ID: 11891286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila.
    Malone CD; Anderson AM; Motl JA; Rexer CH; Chalker DL
    Mol Cell Biol; 2005 Oct; 25(20):9151-64. PubMed ID: 16199890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone methyltransferase TXR1 is required for both H3 and H3.3 lysine 27 methylation in the well-known ciliated protist Tetrahymena thermophila.
    Zhao X; Wang Y; Wang Y; Liu Y; Gao S
    Sci China Life Sci; 2017 Mar; 60(3):264-270. PubMed ID: 27761696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation.
    Wei Y; Yu L; Bowen J; Gorovsky MA; Allis CD
    Cell; 1999 Apr; 97(1):99-109. PubMed ID: 10199406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of the major histone H2A genes completes the cloning and sequencing of known histone genes of Tetrahymena thermophila.
    Liu X; Gorovsky MA
    Nucleic Acids Res; 1996 Aug; 24(15):3023-30. PubMed ID: 8760889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal.
    Dou Y; Mizzen CA; Abrams M; Allis CD; Gorovsky MA
    Mol Cell; 1999 Oct; 4(4):641-7. PubMed ID: 10549296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena.
    Liu Y; Mochizuki K; Gorovsky MA
    Proc Natl Acad Sci U S A; 2004 Feb; 101(6):1679-84. PubMed ID: 14755052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High frequency vector-mediated transformation and gene replacement in Tetrahymena.
    Gaertig J; Gu L; Hai B; Gorovsky MA
    Nucleic Acids Res; 1994 Dec; 22(24):5391-8. PubMed ID: 7816630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone rearrangements accompany nuclear differentiation and dedifferentiation in Tetrahymena.
    Allis CD; Wiggins JC
    Dev Biol; 1984 Feb; 101(2):282-94. PubMed ID: 6692982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleus-specific linker histones Hho1 and Mlh1 form distinct protein interactions during growth, starvation and development in Tetrahymena thermophila.
    Nabeel-Shah S; Ashraf K; Saettone A; Garg J; Derynck J; Lambert JP; Pearlman RE; Fillingham J
    Sci Rep; 2020 Jan; 10(1):168. PubMed ID: 31932604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linker histones are not essential and affect chromatin condensation in vivo.
    Shen X; Yu L; Weir JW; Gorovsky MA
    Cell; 1995 Jul; 82(1):47-56. PubMed ID: 7606784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using Deep RNA sequencing.
    Xiong J; Lu X; Zhou Z; Chang Y; Yuan D; Tian M; Zhou Z; Wang L; Fu C; Orias E; Miao W
    PLoS One; 2012; 7(2):e30630. PubMed ID: 22347391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A temperature-sensitive mutation of the temperature-regulated SerH3 i-antigen gene of Tetrahymena thermophila: implications for regulation of mutual exclusion.
    LaCrosse GL; Doerder FP
    Genetics; 1994 Oct; 138(2):297-301. PubMed ID: 7828814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.