These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 934357)

  • 1. Evidence for the possible formation of a toxic tyrosine metabolite by the liver microsomal drug metabolizing system.
    David JC
    Naunyn Schmiedebergs Arch Pharmacol; 1976; 292(1):79-86. PubMed ID: 934357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatic and pulmonary microsomal metabolism of naphthalene to glutathione adducts: factors affecting the relative rates of conjugate formation.
    Buckpitt AR; Bahnson LS; Franklin RB
    J Pharmacol Exp Ther; 1984 Nov; 231(2):291-300. PubMed ID: 6491983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of SKF 525-A, phenobarbital and 3-methylcholanthrene on the toxicity of lobeline sulfate.
    Kim HL
    Vet Hum Toxicol; 1985 Feb; 27(1):1-2. PubMed ID: 3976162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of pretreatment of mice with norethindrone on the metabolism of 14C-imipramine by the liver microsomal drug-metabolizing enzymes.
    Bellward GD; Morgan RG; Szombathy VH
    Can J Physiol Pharmacol; 1974 Feb; 52(1):28-38. PubMed ID: 4151101
    [No Abstract]   [Full Text] [Related]  

  • 5. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite.
    Jollow DJ; Mitchell JR; Zampaglione N; Gillette JR
    Pharmacology; 1974; 11(3):151-69. PubMed ID: 4831804
    [No Abstract]   [Full Text] [Related]  

  • 6. Interaction of secalonic acid D with phenobarbital, 3-methyl cholanthrene, and SKF-525A in mice.
    Reddy CS; Reddy RV; Hayes AW
    J Toxicol Environ Health; 1983; 12(4-6):687-94. PubMed ID: 6668617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of 14C-toluene to covalently binding metabolites by rat liver microsomes.
    Pathiratne A; Puyear RL; Brammer JD
    Drug Metab Dispos; 1986; 14(4):386-91. PubMed ID: 2873983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A possible protective role for reduced glutathione in aflatoxin B1 toxicity: effect of pretreatment of rats with phenobarbital and 3-methylcholanthrene on aflatoxin toxicity.
    Mgbodile MU; Holscher M; Neal RA
    Toxicol Appl Pharmacol; 1975 Oct; 34(1):128-42. PubMed ID: 1198610
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparison of trans-stilbene oxide, phenobarbital and 3-methylcholanthrene as inducers of steroid metabolism by the rat liver microsomal cytochrome P-450 system.
    Meijer J; DePierre JW
    J Steroid Biochem; 1983 Apr; 18(4):425-35. PubMed ID: 6834827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of hepatic microsomal enzymes in the modulation of phencyclidine-induced toxicity.
    Chaturvedi AK; Rao NG; Berg IE
    Toxicology; 1981; 22(3):245-54. PubMed ID: 7340014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of typical inducers of microsomal drug-metabolizing enzymes on phospholipid metabolism in rat liver.
    Ishidate K; Yoshida M; Nakazawa Y
    Biochem Pharmacol; 1978; 27(22):2595-603. PubMed ID: 103554
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of 2,4-dichloro-6-phenoxyethyl-amine (DPEA) and -diethylaminoethyl diphenylpropylacetate (SKF-525A) on hepatic microsomal azoreductase activity from phenobarbital or 3-methylcholanthrene induced rats.
    Shargel L; Mazel P
    Biochem Pharmacol; 1972 Jan; 21(1):69-75. PubMed ID: 4400525
    [No Abstract]   [Full Text] [Related]  

  • 13. Changes in toxic and antitumor properties of ftorafur by induction or inhibition of the microsomal enzymes activity.
    Belitsky GA; Bukhman VM; Konopleva IA
    Cancer Chemother Pharmacol; 1981; 6(2):183-7. PubMed ID: 6796284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between hepatic microsomal metabolism of N-nitrosamines and cytochrome P-450 species.
    Kawanishi T; Ohno Y; Takahashi A; Takanaka A; Kasuya Y; Omori Y
    Biochem Pharmacol; 1985 Apr; 34(7):919-24. PubMed ID: 3985997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypeptide patterns of hepatic microsomes from Long-Evans rats treated with different xenobiotics.
    Vlasuk GP; Ryan DE; Thomas PE; Levin W; Walz FG
    Biochemistry; 1982 Nov; 21(24):6288-92. PubMed ID: 7150559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of paraldehyde to acetaldehyde by rat liver microsomes.
    Zera RT; Nagasawa HT
    Res Commun Chem Pathol Pharmacol; 1981 Dec; 34(3):531-41. PubMed ID: 7323448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of phenobarbital, 3-methylcholanthrene and beta-naphthoflavone pretreatment on mouse liver microsomal enzymes and on metabolite patterns of benzo[a]pyrene.
    Wang IY
    Biochem Pharmacol; 1981 Jun; 30(11):1337-43. PubMed ID: 6268094
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of drug and chemical pretreatments on biliary excretion of phenylcyclohexene in the rat.
    Law FC; Chakrabarti S
    Drug Chem Toxicol; 1984; 7(3):273-82. PubMed ID: 6734467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of phenobarbital, dexamethasone, and 3-methylcholanthrene administration on the metabolism of 17 beta-estradiol by liver microsomes from female rats.
    Suchar LA; Chang RL; Thomas PE; Rosen RT; Lech J; Conney AH
    Endocrinology; 1996 Feb; 137(2):663-76. PubMed ID: 8593816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the effects of pretreatment with phenobarbitone and 3-methylcholanthrene on the metabolism of aflatoxin B1 by rat liver microsomes and isolated hepatocytes in vitro.
    Metcalfe SA; Colley PJ; Neal GE
    Chem Biol Interact; 1981 May; 35(2):145-57. PubMed ID: 6783328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.