These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 9344081)
1. Event-related potentials of the rat during active and passive auditory oddball paradigms. Shinba T Electroencephalogr Clin Neurophysiol; 1997 Sep; 104(5):447-52. PubMed ID: 9344081 [TBL] [Abstract][Full Text] [Related]
2. Multichannel auditory event-related brain potentials: effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes. Anderer P; Semlitsch HV; Saletu B Electroencephalogr Clin Neurophysiol; 1996 Nov; 99(5):458-72. PubMed ID: 9020805 [TBL] [Abstract][Full Text] [Related]
3. Neuronal firing activity in the dorsal hippocampus during the auditory discrimination oddball task in awake rats: relation to event-related potential generation. Shinba T Brain Res Cogn Brain Res; 1999 Oct; 8(3):241-50. PubMed ID: 10556602 [TBL] [Abstract][Full Text] [Related]
4. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: a sLORETA study. Justen C; Herbert C BMC Neurosci; 2018 Apr; 19(1):25. PubMed ID: 29673322 [TBL] [Abstract][Full Text] [Related]
5. The topography of event-related potentials in passive and active conditions of a 3-tone auditory oddball test. Oades RD; Zerbin D; Dittmann-Balcar A Int J Neurosci; 1995 Apr; 81(3-4):249-64. PubMed ID: 7628914 [TBL] [Abstract][Full Text] [Related]
6. The impact of motor activity on intracerebral ERPs: P3 latency variability in modified auditory odd-ball paradigms involving a motor task. Kanovský P; Streitová H; Klajblová H; Bares M; Daniel P; Rektor I Neurophysiol Clin; 2003 Sep; 33(4):159-68. PubMed ID: 14519543 [TBL] [Abstract][Full Text] [Related]
7. The effects of immediate and short-term retest on the latencies and amplitudes of the auditory event-related potentials in healthy adults. Gandelman-Marton R; Theitler J; Klein C; Rabey JM J Neurosci Methods; 2010 Jan; 186(1):77-80. PubMed ID: 19854216 [TBL] [Abstract][Full Text] [Related]
8. The auditory P3 from passive and active three-stimulus oddball paradigm. Wronka E; Kaiser J; Coenen AML Acta Neurobiol Exp (Wars); 2008; 68(3):362-72. PubMed ID: 18668159 [TBL] [Abstract][Full Text] [Related]
9. Event-related potentials during auditory oddball, and combined auditory oddball-visual paradigms. Işoğlu-alkaç U; Kedzior K; Karamürsel S; Ermutlu N Int J Neurosci; 2007 Apr; 117(4):487-506. PubMed ID: 17380607 [TBL] [Abstract][Full Text] [Related]
10. The effect of sex differences on event-related potentials in young adults. Gölgeli A; Süer C; Ozesmi C; Dolu N; Aşcioğlu M; Sahin O Int J Neurosci; 1999 Aug; 99(1-4):69-77. PubMed ID: 10495197 [TBL] [Abstract][Full Text] [Related]
12. Age-changed normative auditory event-related potential value in children in Taiwan. Tsai ML; Hung KL; Tao-Hsin Tung W; Chiang TR J Formos Med Assoc; 2012 May; 111(5):245-52. PubMed ID: 22656394 [TBL] [Abstract][Full Text] [Related]
13. Auditory event-related potential (ERP) and difference-wave topography in schizophrenic patients with/without active hallucinations and delusions: a comparison with young obsessive-compulsive disorder (OCD) and healthy subjects. Oades RD; Zerbin D; Dittmann-Balcar A; Eggers C Int J Psychophysiol; 1996; 22(3):185-214. PubMed ID: 8835626 [TBL] [Abstract][Full Text] [Related]
14. Auditory ERPs to non-target stimuli in schizophrenia: relationship to probability, task-demands, and target ERPs. O'Donnell BF; Hokama H; McCarley RW; Smith RS; Salisbury DF; Mondrow E; Nestor PG; Shenton ME Int J Psychophysiol; 1994 Aug; 17(3):219-31. PubMed ID: 7806466 [TBL] [Abstract][Full Text] [Related]
15. The intracranial topography of the P3 event-related potential elicited during auditory oddball. Smith ME; Halgren E; Sokolik M; Baudena P; Musolino A; Liegeois-Chauvel C; Chauvel P Electroencephalogr Clin Neurophysiol; 1990 Sep; 76(3):235-48. PubMed ID: 1697255 [TBL] [Abstract][Full Text] [Related]
16. Modality differences in ERP components between somatosensory and auditory Go/No-go paradigms in prepubescent children. Nakata H; Takezawa M; Kamijo K; Shibasaki M PLoS One; 2021; 16(11):e0259653. PubMed ID: 34748591 [TBL] [Abstract][Full Text] [Related]
17. Clinical application of the P3 component of event-related potentials. I. Normal aging. Pfefferbaum A; Ford JM; Wenegrat BG; Roth WT; Kopell BS Electroencephalogr Clin Neurophysiol; 1984 Apr; 59(2):85-103. PubMed ID: 6200311 [TBL] [Abstract][Full Text] [Related]
18. A high-density ERP study reveals latency, amplitude, and topographical differences in multiple sclerosis patients versus controls. Whelan R; Lonergan R; Kiiski H; Nolan H; Kinsella K; Bramham J; O'Brien M; Reilly RB; Hutchinson M; Tubridy N Clin Neurophysiol; 2010 Sep; 121(9):1420-1426. PubMed ID: 20381418 [TBL] [Abstract][Full Text] [Related]
19. Auditory event-related potentials in humans and rats: effects of task manipulation. Sambeth A; Maes JH; Van Luijtelaar G; Molenkamp IB; Jongsma ML; Van Rijn CM Psychophysiology; 2003 Jan; 40(1):60-8. PubMed ID: 12751804 [TBL] [Abstract][Full Text] [Related]
20. Development and topography of auditory event-related potentials (ERPs): mismatch and processing negativity in individuals 8-22 years of age. Oades RD; Dittmann-Balcar A; Zerbin D Psychophysiology; 1997 Nov; 34(6):677-93. PubMed ID: 9401422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]