BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 9344353)

  • 1. Calcium homeostasis of isolated single cortical fibers of rat lens.
    Srivastava SK; Wang LF; Ansari NH; Bhatnagar A
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2300-12. PubMed ID: 9344353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of calcium-dependent protease(s) in globulization of isolated rat lens cortical fiber cells.
    Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):194-9. PubMed ID: 11133867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of calcium-induced disintegrative globulization of rat lens fiber cells.
    Wang L; Bhatnagar A; Ansari NH; Dhir P; Srivastava SK
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):915-22. PubMed ID: 8603876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of osmotic changes to disintegrative globulization of single cortical fibers isolated from rat lens.
    Wang LF; Dhir P; Bhatnagar A; Srivastava SK
    Exp Eye Res; 1997 Aug; 65(2):267-75. PubMed ID: 9268595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in the light transmission through single lens fibers during calcium-mediated disintegrative globulization.
    Bhatnagar A; Dhir P; Wang LF; Ansari NH; Lo W; Srivastava SK
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):586-92. PubMed ID: 9071211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin.
    Chandra D; Ramana KV; Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2285-92. PubMed ID: 12091429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-mediated disintegrative globulization of isolated ocular lens fibers mimics cataractogenesis.
    Bhatnagar A; Ansari NH; Wang L; Khanna P; Wang C; Srivastava SK
    Exp Eye Res; 1995 Sep; 61(3):303-10. PubMed ID: 7556494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel barium-sensitive calcium influx into rat astrocytes at low external potassium.
    Dallwig R; Vitten H; Deitmer JW
    Cell Calcium; 2000 Oct; 28(4):247-59. PubMed ID: 11032780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous measurement of intracellular Na+ and Ca2+ during K(+)-free perfusion in isolated myocytes.
    Hayashi H; Satoh H; Noda N; Terada H; Hirano M; Yamashita Y; Kobayashi A; Yamazaki N
    Am J Physiol; 1994 Feb; 266(2 Pt 1):C416-22. PubMed ID: 8141255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of low Na+-induced increase in intracellular calcium in KCl-depolarized rat cardiomyocytes.
    Rathi SS; Saini HK; Xu YJ; Dhalla NS
    Mol Cell Biochem; 2004 Aug; 263(1-2):151-62. PubMed ID: 15524176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the endoplasmic reticulum in shaping calcium dynamics in human lens cells.
    Williams MR; Riach RA; Collison DJ; Duncan G
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1009-17. PubMed ID: 11274079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of intracellular Ca2+ chelation on the light response in Drosophila photoreceptors.
    Hardie RC
    J Comp Physiol A; 1995 Dec; 177(6):707-21. PubMed ID: 8537938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium depolarization elevates cytosolic free calcium concentration in rat anterior pituitary cells through 1,4-dihydropyridine-sensitive, omega-conotoxin-insensitive calcium channels.
    Meier K; Knepel W; Schöfl C
    Endocrinology; 1988 Jun; 122(6):2764-70. PubMed ID: 2453348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers.
    Kurebayashi N; Harkins AB; Baylor SM
    Biophys J; 1993 Jun; 64(6):1934-60. PubMed ID: 8369415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of extracellular ions and modulators of calcium transport on survival of tert-butyl hydroperoxide exposed cardiac myocytes.
    Castro GJ; Bhatnagar A
    Cardiovasc Res; 1993 Oct; 27(10):1873-81. PubMed ID: 8275538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of free cytosolic Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. I. Efficiency of transport and interactions between cations.
    Schnetkamp PP; Li XB; Basu DK; Szerencsei RT
    J Biol Chem; 1991 Dec; 266(34):22975-82. PubMed ID: 1744092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confocal imaging of Ca2+ signaling in cultured rat retinal pigment epithelial cells during mechanical and pharmacologic stimulation.
    Stalmans P; Himpens B
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):176-87. PubMed ID: 9008642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of [Na+]i and [Ca2+]i in guinea pig myocytes: dual loading of fluorescent indicators SBFI and fluo 3.
    Satoh H; Hayashi H; Noda N; Terada H; Kobayashi A; Hirano M; Yamashita Y; Yamazaki N
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H568-76. PubMed ID: 8141358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular free Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. II. Thermodynamic competence of transmembrane Na+ and K+ gradients and inactivation of Na(+)-dependent Ca2+ extrusion.
    Schnetkamp PP; Basu DK; Li XB; Szerencsei RT
    J Biol Chem; 1991 Dec; 266(34):22983-90. PubMed ID: 1744093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonist-induced rise in intracellular calcium of lens epithelial cells: effects on the actin cytoskeleton.
    Rafferty NS; Rafferty KA; Ito E
    Exp Eye Res; 1994 Aug; 59(2):191-201. PubMed ID: 7835408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.