These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 9344353)
1. Calcium homeostasis of isolated single cortical fibers of rat lens. Srivastava SK; Wang LF; Ansari NH; Bhatnagar A Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2300-12. PubMed ID: 9344353 [TBL] [Abstract][Full Text] [Related]
2. Role of calcium-dependent protease(s) in globulization of isolated rat lens cortical fiber cells. Wang L; Christensen BN; Bhatnagar A; Srivastava SK Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):194-9. PubMed ID: 11133867 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of calcium-induced disintegrative globulization of rat lens fiber cells. Wang L; Bhatnagar A; Ansari NH; Dhir P; Srivastava SK Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):915-22. PubMed ID: 8603876 [TBL] [Abstract][Full Text] [Related]
4. Contribution of osmotic changes to disintegrative globulization of single cortical fibers isolated from rat lens. Wang LF; Dhir P; Bhatnagar A; Srivastava SK Exp Eye Res; 1997 Aug; 65(2):267-75. PubMed ID: 9268595 [TBL] [Abstract][Full Text] [Related]
5. Alterations in the light transmission through single lens fibers during calcium-mediated disintegrative globulization. Bhatnagar A; Dhir P; Wang LF; Ansari NH; Lo W; Srivastava SK Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):586-92. PubMed ID: 9071211 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin. Chandra D; Ramana KV; Wang L; Christensen BN; Bhatnagar A; Srivastava SK Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2285-92. PubMed ID: 12091429 [TBL] [Abstract][Full Text] [Related]
7. Calcium-mediated disintegrative globulization of isolated ocular lens fibers mimics cataractogenesis. Bhatnagar A; Ansari NH; Wang L; Khanna P; Wang C; Srivastava SK Exp Eye Res; 1995 Sep; 61(3):303-10. PubMed ID: 7556494 [TBL] [Abstract][Full Text] [Related]
8. A novel barium-sensitive calcium influx into rat astrocytes at low external potassium. Dallwig R; Vitten H; Deitmer JW Cell Calcium; 2000 Oct; 28(4):247-59. PubMed ID: 11032780 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous measurement of intracellular Na+ and Ca2+ during K(+)-free perfusion in isolated myocytes. Hayashi H; Satoh H; Noda N; Terada H; Hirano M; Yamashita Y; Kobayashi A; Yamazaki N Am J Physiol; 1994 Feb; 266(2 Pt 1):C416-22. PubMed ID: 8141255 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of low Na+-induced increase in intracellular calcium in KCl-depolarized rat cardiomyocytes. Rathi SS; Saini HK; Xu YJ; Dhalla NS Mol Cell Biochem; 2004 Aug; 263(1-2):151-62. PubMed ID: 15524176 [TBL] [Abstract][Full Text] [Related]
11. Role of the endoplasmic reticulum in shaping calcium dynamics in human lens cells. Williams MR; Riach RA; Collison DJ; Duncan G Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1009-17. PubMed ID: 11274079 [TBL] [Abstract][Full Text] [Related]
12. Effects of intracellular Ca2+ chelation on the light response in Drosophila photoreceptors. Hardie RC J Comp Physiol A; 1995 Dec; 177(6):707-21. PubMed ID: 8537938 [TBL] [Abstract][Full Text] [Related]
13. Potassium depolarization elevates cytosolic free calcium concentration in rat anterior pituitary cells through 1,4-dihydropyridine-sensitive, omega-conotoxin-insensitive calcium channels. Meier K; Knepel W; Schöfl C Endocrinology; 1988 Jun; 122(6):2764-70. PubMed ID: 2453348 [TBL] [Abstract][Full Text] [Related]
14. Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers. Kurebayashi N; Harkins AB; Baylor SM Biophys J; 1993 Jun; 64(6):1934-60. PubMed ID: 8369415 [TBL] [Abstract][Full Text] [Related]
15. Effect of extracellular ions and modulators of calcium transport on survival of tert-butyl hydroperoxide exposed cardiac myocytes. Castro GJ; Bhatnagar A Cardiovasc Res; 1993 Oct; 27(10):1873-81. PubMed ID: 8275538 [TBL] [Abstract][Full Text] [Related]
16. Regulation of free cytosolic Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. I. Efficiency of transport and interactions between cations. Schnetkamp PP; Li XB; Basu DK; Szerencsei RT J Biol Chem; 1991 Dec; 266(34):22975-82. PubMed ID: 1744092 [TBL] [Abstract][Full Text] [Related]
17. Confocal imaging of Ca2+ signaling in cultured rat retinal pigment epithelial cells during mechanical and pharmacologic stimulation. Stalmans P; Himpens B Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):176-87. PubMed ID: 9008642 [TBL] [Abstract][Full Text] [Related]
18. Regulation of [Na+]i and [Ca2+]i in guinea pig myocytes: dual loading of fluorescent indicators SBFI and fluo 3. Satoh H; Hayashi H; Noda N; Terada H; Kobayashi A; Hirano M; Yamashita Y; Yamazaki N Am J Physiol; 1994 Feb; 266(2 Pt 2):H568-76. PubMed ID: 8141358 [TBL] [Abstract][Full Text] [Related]
19. Regulation of intracellular free Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. II. Thermodynamic competence of transmembrane Na+ and K+ gradients and inactivation of Na(+)-dependent Ca2+ extrusion. Schnetkamp PP; Basu DK; Li XB; Szerencsei RT J Biol Chem; 1991 Dec; 266(34):22983-90. PubMed ID: 1744093 [TBL] [Abstract][Full Text] [Related]
20. Agonist-induced rise in intracellular calcium of lens epithelial cells: effects on the actin cytoskeleton. Rafferty NS; Rafferty KA; Ito E Exp Eye Res; 1994 Aug; 59(2):191-201. PubMed ID: 7835408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]