These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 9344731)
1. "First step" negative feedback accounts for inhibition of fast neurotransmitter release. Khanin R; Parnas H; Segel L J Theor Biol; 1997 Oct; 188(3):261-76. PubMed ID: 9344731 [TBL] [Abstract][Full Text] [Related]
2. Theory for the feedback inhibition of fast release of neurotransmitter. Yusim K; Parnas H; Segel LA Bull Math Biol; 2000 Jul; 62(4):717-57. PubMed ID: 10938630 [TBL] [Abstract][Full Text] [Related]
3. A novel, extremely fast, feedback inhibition of glutamate release in the crayfish neuromuscular junction. Kupchik YM; Parnas H; Parnas I Neuroscience; 2011 Jan; 172():44-54. PubMed ID: 21034796 [TBL] [Abstract][Full Text] [Related]
4. Glutamate-induced glutamate release: a proposed mechanism for calcium bursting in astrocytes. Larter R; Craig MG Chaos; 2005 Dec; 15(4):047511. PubMed ID: 16396604 [TBL] [Abstract][Full Text] [Related]
5. The role of perisynaptic glial sheaths in glutamate spillover and extracellular Ca(2+) depletion. Rusakov DA Biophys J; 2001 Oct; 81(4):1947-59. PubMed ID: 11566769 [TBL] [Abstract][Full Text] [Related]
6. The tripartite synapse: roles for gliotransmission in health and disease. Halassa MM; Fellin T; Haydon PG Trends Mol Med; 2007 Feb; 13(2):54-63. PubMed ID: 17207662 [TBL] [Abstract][Full Text] [Related]
7. On the feedback between theory and experiment in elucidating the molecular mechanisms underlying neurotransmitter release. Khanin R; Parnas I; Parnas H Bull Math Biol; 2006 Jul; 68(5):997-1009. PubMed ID: 16832736 [TBL] [Abstract][Full Text] [Related]
8. Stochastic model of central synapses: slow diffusion of transmitter interacting with spatially distributed receptors and transporters. Trommershäuser J; Marienhagen J; Zippelius A J Theor Biol; 1999 May; 198(1):101-20. PubMed ID: 10329118 [TBL] [Abstract][Full Text] [Related]
9. Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release. Shahrezaei V; Delaney KR J Neurophysiol; 2005 Sep; 94(3):1912-9. PubMed ID: 15888526 [TBL] [Abstract][Full Text] [Related]
10. The secretory pore array hypothesis of transmitter release. Kriebel ME; Keller B; Fox GQ; Brown OM Cell Biol Int; 2000; 24(11):839-48. PubMed ID: 11067768 [No Abstract] [Full Text] [Related]
11. Mechanism of transmitter release: voltage hypothesis and calcium hypothesis. Zucker RS; Landò L Science; 1986 Feb; 231(4738):574-9. PubMed ID: 2868525 [TBL] [Abstract][Full Text] [Related]
12. A model for a G-protein-mediated mechanism for synaptic channel modulation. Soto G; Othmer HG Math Biosci; 2006 Apr; 200(2):188-213. PubMed ID: 16540128 [TBL] [Abstract][Full Text] [Related]
13. Transmitter metabolism as a mechanism of synaptic plasticity: a modeling study. Axmacher N; Stemmler M; Engel D; Draguhn A; Ritz R J Neurophysiol; 2004 Jan; 91(1):25-39. PubMed ID: 13679396 [TBL] [Abstract][Full Text] [Related]
14. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Schneggenburger R; Neher E Nature; 2000 Aug; 406(6798):889-93. PubMed ID: 10972290 [TBL] [Abstract][Full Text] [Related]