These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9344964)

  • 1. The three-dimensional hydrodynamics of tadpole locomotion.
    Liu H; Wassersug R; Kawachi K
    J Exp Biol; 1997 Nov; 200(Pt 22):2807-19. PubMed ID: 9344964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational fluid dynamics study of tadpole swimming.
    Liu H; Wassersug R; Kawachi K
    J Exp Biol; 1996; 199(Pt 6):1245-60. PubMed ID: 9319105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertebral function during tadpole locomotion.
    Azizi E; Landberg T; Wassersug RJ
    Zoology (Jena); 2007; 110(4):290-7. PubMed ID: 17611090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport.
    Li G; Liu H; Müller UK; Voesenek CJ; van Leeuwen JL
    Proc Biol Sci; 2021 Dec; 288(1964):20211601. PubMed ID: 34847768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of the Tail or Lack Thereof in the Evolution of Tetrapod Aquatic Propulsion.
    Fish FE; Rybczynski N; Lauder GV; Duff CM
    Integr Comp Biol; 2021 Sep; 61(2):398-413. PubMed ID: 33881525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.
    Müller UK; van den Boogaart JG; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):196-205. PubMed ID: 18165247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming in the freshwater stingray Potamotrygon orbignyi.
    Blevins EL; Lauder GV
    J Exp Biol; 2012 Sep; 215(Pt 18):3231-41. PubMed ID: 22693031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hydrodynamics of locomotion at intermediate Reynolds numbers: undulatory swimming in ascidian larvae (Botrylloides sp.).
    McHenry MJ; Azizi E; Strother JA
    J Exp Biol; 2003 Jan; 206(Pt 2):327-43. PubMed ID: 12477902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical control of swimming speed: stiffness and axial wave form in undulating fish models.
    McHenry MJ; Pell CA; Long JH
    J Exp Biol; 1995; 198(Pt 11):2293-305. PubMed ID: 9320209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry.
    Akanyeti O; Putney J; Yanagitsuru YR; Lauder GV; Stewart WJ; Liao JC
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13828-13833. PubMed ID: 29229818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of tail shape on tadpole swimming performance.
    Van Buskirk J; McCollum SA
    J Exp Biol; 2000 Jul; 203(Pt 14):2149-58. PubMed ID: 10862727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fish-inspired segment models for undulatory steady swimming.
    Akanyeti O; Di Santo V; Goerig E; Wainwright DK; Liao JC; Castro-Santos T; Lauder GV
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35487201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models.
    Lim JL; Lauder GV
    Bioinspir Biomim; 2016 Jul; 11(4):046006. PubMed ID: 27378052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of flexible fin and compliant joint stiffness on propulsive performance: theory and experiments.
    Kancharala AK; Philen MK
    Bioinspir Biomim; 2014 Sep; 9(3):036011. PubMed ID: 24737004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.
    Babu MN; Mallikarjuna JM; Krishnankutty P
    Robotics Biomim; 2016; 3():3. PubMed ID: 27077022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How the body contributes to the wake in undulatory fish swimming: flow fields of a swimming eel (Anguilla anguilla).
    Müller UK; Smit J; Stamhuis EJ; Videler JJ
    J Exp Biol; 2001 Aug; 204(Pt 16):2751-62. PubMed ID: 11683431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.