These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 9344973)

  • 41. Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres.
    Ranatunga KW; Coupland ME; Pinniger GJ; Roots H; Offer GW
    J Physiol; 2007 Nov; 585(Pt 1):263-77. PubMed ID: 17916609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Body size and countermovement depth confound relationship between muscle power output and jumping performance.
    Markovic S; Mirkov DM; Nedeljkovic A; Jaric S
    Hum Mov Sci; 2014 Feb; 33():203-10. PubMed ID: 24280557
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County.
    Astley HC; Abbott EM; Azizi E; Marsh RL; Roberts TJ
    J Exp Biol; 2013 Nov; 216(Pt 21):3947-53. PubMed ID: 24133149
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The determinants of skeletal muscle force and power: their adaptability with changes in activity pattern.
    Fitts RH; McDonald KS; Schluter JM
    J Biomech; 1991; 24 Suppl 1():111-22. PubMed ID: 1791172
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion.
    Prilutsky BI; Herzog W; Leonard TR; Allinger TL
    J Biomech; 1996 Apr; 29(4):417-34. PubMed ID: 8964771
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermal dependence of contractile properties of skeletal muscle from the lizard Sceloporus occidentalis with comments on methods for fitting and comparing force-velocity curves.
    Marsh RL; Bennett AF
    J Exp Biol; 1986 Nov; 126():63-77. PubMed ID: 3806003
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Muscle contractile properties as an explanation of the higher mean power output in marmosets than humans during jumping.
    Plas RL; Degens H; Meijer JP; de Wit GM; Philippens IH; Bobbert MF; Jaspers RT
    J Exp Biol; 2015 Jul; 218(Pt 14):2166-73. PubMed ID: 25987730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energetics of fast- and slow-twitch muscles of the mouse.
    Barclay CJ; Constable JK; Gibbs CL
    J Physiol; 1993 Dec; 472():61-80. PubMed ID: 8145164
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of pH and stimulus phase on work done by isolated frog sartorius muscle during cyclical contraction.
    Stevens ED
    J Muscle Res Cell Motil; 1988 Aug; 9(4):329-33. PubMed ID: 3265421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of reinnervation on force production and power output in skeletal muscle.
    Yoshimura K; Asato H; Cederna PS; Urbanchek MG; Kuzon WM
    J Surg Res; 1999 Feb; 81(2):201-8. PubMed ID: 9927541
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Jumping mechanics of desert kangaroo rats.
    Schwaner MJ; Lin DC; McGowan CP
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30420493
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping.
    Nagano A; Komura T; Fukashiro S; Himeno R
    J Electromyogr Kinesiol; 2005 Aug; 15(4):367-76. PubMed ID: 15811607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Individual correlation of morphology, muscle mechanics, and locomotion in a salamander.
    Bennett AF; Garland T; Else PL
    Am J Physiol; 1989 Jun; 256(6 Pt 2):R1200-8. PubMed ID: 2735445
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermal dependence of isotonic contractile properties of skeletal muscle and sprint performance of the lizard Dipsosaurus dorsalis.
    Marsh RL; Bennett AF
    J Comp Physiol B; 1985; 155(5):541-51. PubMed ID: 3837028
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of proximal muscle function during level versus incline hopping in tammar wallabies (Macropus eugenii).
    McGowan CP; Baudinette RV; Biewener AA
    J Exp Biol; 2007 Apr; 210(Pt 7):1255-65. PubMed ID: 17371924
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The diversity and evolution of locomotor muscle properties in anurans.
    Astley HC
    J Exp Biol; 2016 Oct; 219(Pt 19):3163-3173. PubMed ID: 27707867
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Built for jumping: the design of the frog muscular system.
    Lutz GJ; Rome LC
    Science; 1994 Jan; 263(5145):370-2. PubMed ID: 8278808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dependence of human squat jump performance on the series elastic compliance of the triceps surae: a simulation study.
    Bobbert MF
    J Exp Biol; 2001 Feb; 204(Pt 3):533-42. PubMed ID: 11171304
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative analysis of muscle fibre type and myosin heavy chain distribution in the frog hindlimb: implications for locomotory design.
    Lutz GJ; Bremner S; Lajevardi N; Lieber RL; Rome LC
    J Muscle Res Cell Motil; 1998 Oct; 19(7):717-31. PubMed ID: 9836143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Power output by an asynchronous flight muscle from a beetle.
    Josephson RK; Malamud JG; Stokes DR
    J Exp Biol; 2000 Sep; 203(Pt 17):2667-89. PubMed ID: 10934007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.