BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 9345475)

  • 1. Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging.
    Darby DG; Nobre AC; Thangaraj V; Edelman R; Mesulam MM; Warach S
    Neuroimage; 1996 Feb; 3(1):53-62. PubMed ID: 9345475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study.
    Nitschke MF; Binkofski F; Buccino G; Posse S; Erdmann C; Kömpf D; Seitz RJ; Heide W
    Hum Brain Mapp; 2004 Jun; 22(2):155-64. PubMed ID: 15108303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional anatomy of a prelearned sequence of horizontal saccades in humans.
    Petit L; Orssaud C; Tzourio N; Crivello F; Berthoz A; Mazoyer B
    J Neurosci; 1996 Jun; 16(11):3714-26. PubMed ID: 8642414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive saccades in children and adults: A combined fMRI and eye tracking study.
    Lukasova K; Nucci MP; Neto RMA; Vieira G; Sato JR; Amaro E
    PLoS One; 2018; 13(5):e0196000. PubMed ID: 29718927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Effective Connectivity of the Superior Parietal Lobe during Inhibition and Redirection of Eye Movements.
    Asscheman SJ; Thakkar KN; Neggers SF
    J Exp Neurosci; 2015; 9(Suppl 1):27-40. PubMed ID: 27147827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroanatomical correlates of human reasoning.
    Goel V; Gold B; Kapur S; Houle S
    J Cogn Neurosci; 1998 May; 10(3):293-302. PubMed ID: 9869705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions.
    Le TH; Pardo JV; Hu X
    J Neurophysiol; 1998 Mar; 79(3):1535-48. PubMed ID: 9497430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency variation of a pattern-flash visual stimulus during PET differentially activates brain from striate through frontal cortex.
    Mentis MJ; Alexander GE; Grady CL; Horwitz B; Krasuski J; Pietrini P; Strassburger T; Hampel H; Schapiro MB; Rapoport SI
    Neuroimage; 1997 Feb; 5(2):116-28. PubMed ID: 9345542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-lasting connectivity changes induced by intensive first-person shooter gaming.
    Momi D; Smeralda CL; Di Lorenzo G; Neri F; Rossi S; Rossi A; Santarnecchi E
    Brain Imaging Behav; 2021 Jun; 15(3):1518-1532. PubMed ID: 32767208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Functional Role of Frontal Eye Fields in Voluntary and Reflexive Saccades Using Continuous Theta Burst Stimulation.
    Gurel SC; Castelo-Branco M; Sack AT; Duecker F
    Front Neurosci; 2018; 12():944. PubMed ID: 30618573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG Microstates Change in Response to Increase in Dopaminergic Stimulation in Typical Parkinson's Disease Patients.
    Serrano JI; Del Castillo MD; Cortés V; Mendes N; Arroyo A; Andreo J; Rocon E; Del Valle M; Herreros J; Romero JP
    Front Neurosci; 2018; 12():714. PubMed ID: 30374285
    [No Abstract]   [Full Text] [Related]  

  • 12. The Dorsal Medial Prefrontal Cortex Is Recruited by High Construal of Non-social Stimuli.
    Baetens KL; Ma N; Van Overwalle F
    Front Behav Neurosci; 2017; 11():44. PubMed ID: 28352220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations.
    Vernet M; Quentin R; Chanes L; Mitsumasu A; Valero-Cabré A
    Front Integr Neurosci; 2014; 8():66. PubMed ID: 25202241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional and structural investigation of the human fronto-basal volitional saccade network.
    Neggers SF; Diepen RM; Zandbelt BB; Vink M; Mandl RC; Gutteling TP
    PLoS One; 2012; 7(1):e29517. PubMed ID: 22235303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential activation of human oculomotor centers during planning of visually-guided eye movements: a combined fMRI-MEG study.
    Sestieri C; Pizzella V; Cianflone F; Luca Romani G; Corbetta M
    Front Hum Neurosci; 2007; 1():1. PubMed ID: 18958215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans.
    McDowell JE; Dyckman KA; Austin BP; Clementz BA
    Brain Cogn; 2008 Dec; 68(3):255-70. PubMed ID: 18835656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical and cerebellar activation induced by reflexive and voluntary saccades.
    Schraa-Tam CK; van Broekhoven P; van der Geest JN; Frens MA; Smits M; van der Lugt A
    Exp Brain Res; 2009 Jan; 192(2):175-87. PubMed ID: 18797855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans.
    Konen CS; Kleiser R; Seitz RJ; Bremmer F
    Exp Brain Res; 2005 Aug; 165(2):203-16. PubMed ID: 15864563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer's disease) with FDG-PET.
    Nestor PJ; Caine D; Fryer TD; Clarke J; Hodges JR
    J Neurol Neurosurg Psychiatry; 2003 Nov; 74(11):1521-9. PubMed ID: 14617709
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.