BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9346438)

  • 1. Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure.
    Michel E; Hillebrand S; vonTwickel J; Zernikow B; Jorch G
    J Cereb Blood Flow Metab; 1997 Oct; 17(10):1127-31. PubMed ID: 9346438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twenty-four-hour esophageal impedance-pH monitoring in healthy preterm neonates: rate and characteristics of acid, weakly acidic, and weakly alkaline gastroesophageal reflux.
    López-Alonso M; Moya MJ; Cabo JA; Ribas J; del Carmen Macías M; Silny J; Sifrim D
    Pediatrics; 2006 Aug; 118(2):e299-308. PubMed ID: 16831894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gosling's Doppler pulsatility index revisited.
    Michel E; Zernikow B
    Ultrasound Med Biol; 1998 May; 24(4):597-9. PubMed ID: 9651969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral pattern of neonatal cerebral blood flow velocity: comparison with spectra from blood pressure and heart rate.
    Reynolds KJ; Panerai RB; Kelsall AW; Rennie JM; Evans DH
    Pediatr Res; 1997 Feb; 41(2):276-84. PubMed ID: 9029651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-spectral analysis of cerebral autoregulation dynamics in high risk preterm infants during the perinatal period.
    Menke J; Michel E; Hillebrand S; von Twickel J; Jorch G
    Pediatr Res; 1997 Nov; 42(5):690-9. PubMed ID: 9357945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of end expiratory pressure on cerebral blood flow in preterm infants.
    Mullaart RA; Hopman JC; Rotteveel JJ; Daniëls O; Stoelinga GB; De Haan AF; Kollée LA
    Early Hum Dev; 1995 Jan; 40(2):157-65. PubMed ID: 7750442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal adaptation of cerebral blood flow using near infrared spectroscopy in extremely preterm infants undergoing high-frequency oscillatory ventilation.
    Noone MA; Sellwood M; Meek JH; Wyatt JS
    Acta Paediatr; 2003 Sep; 92(9):1079-84. PubMed ID: 14599074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Older age and male sex are associated with higher cerebrovascular impedance.
    Sugawara J; Tarumi T; Xing C; Liu J; Tomoto T; Pasha EP; Zhang R
    J Appl Physiol (1985); 2021 Jan; 130(1):172-181. PubMed ID: 33151779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracheal suctioning is associated with prolonged disturbances of cerebral hemodynamics in very low birth weight infants.
    Kaiser JR; Gauss CH; Williams DK
    J Perinatol; 2008 Jan; 28(1):34-41. PubMed ID: 18165829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral autoregulation of preterm neonates--a non-linear control system?
    Zernikow B; Michel E; Kohlmann G; Steck J; Schmitt RM; Jorch G
    Arch Dis Child Fetal Neonatal Ed; 1994 May; 70(3):F166-73. PubMed ID: 8198408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation.
    Panerai RB; Coughtrey H; Rennie JM; Evans DH
    Physiol Meas; 1993 Nov; 14(4):411-8. PubMed ID: 8274965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy.
    Wong FY; Leung TS; Austin T; Wilkinson M; Meek JH; Wyatt JS; Walker AM
    Pediatrics; 2008 Mar; 121(3):e604-11. PubMed ID: 18250118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ontogeny of Cerebrovascular Critical Closing Pressure.
    Rhee CJ; Fraser CD; Kibler K; Easley RB; Andropoulos DB; Czosnyka M; Varsos GV; Smielewski P; Rusin CG; Brady KM; Kaiser JR
    Acta Neurochir Suppl; 2016; 122():249-53. PubMed ID: 27165916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations among critical closing pressure, pulsatility index and cerebrovascular resistance.
    Hsu HY; Chern CM; Kuo JS; Kuo TB; Chen YT; Hu HH
    Ultrasound Med Biol; 2004 Oct; 30(10):1329-35. PubMed ID: 15582232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valsalva maneuver suggests increased rigidity of cerebral resistance vessels in familial dysautonomia.
    Hilz MJ; Axelrod FB; Steingrueber M; Stemper B
    Clin Auton Res; 2002 Oct; 12(5):385-92. PubMed ID: 12420084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of changes in tPCO2 on the fractional tissue oxygen extraction--as measured by near-infrared spectroscopy--in neonates during the first days of life.
    Vanderhaegen J; Naulaers G; Vanhole C; De Smet D; Van Huffel S; Vanhaesebrouck S; Devlieger H
    Eur J Paediatr Neurol; 2009 Mar; 13(2):128-34. PubMed ID: 18619872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors that influence mesenteric artery blood flow velocity in newborn preterm infants.
    Havranek T; Thompson Z; Carver JD
    J Perinatol; 2006 Aug; 26(8):493-7. PubMed ID: 16826195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of phenobarbital on cerebral hemodynamics in preterm neonates.
    Saliba E; Autret E; Khadiry L; Chamboux C; Laugier J
    Dev Pharmacol Ther; 1991; 17(3-4):133-7. PubMed ID: 1841828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [What is a Sufficient Blood Pressure in the Preterm Newborn?].
    Stopfkuchen H
    Klin Padiatr; 2003; 215(1):16-21. PubMed ID: 12545420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Objective selection of signals for assessment of cerebral blood flow autoregulation in neonates.
    Ramos EG; Simpson DM; Panerai RB; Nadal J; Lopes JM; Evans DH
    Physiol Meas; 2006 Jan; 27(1):35-49. PubMed ID: 16365509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.