BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9348505)

  • 1. Localization of single nuclear pore complexes by confocal laser scanning microscopy and analysis of their distribution.
    Kubitscheck U; Peters R
    Methods Cell Biol; 1998; 53():79-98. PubMed ID: 9348505
    [No Abstract]   [Full Text] [Related]  

  • 2. Visualization of nuclear pore complex and its distribution by confocal laser scanning microscopy.
    Kubitscheck U; Kues T; Peters R
    Methods Enzymol; 1999; 307():207-30. PubMed ID: 10506976
    [No Abstract]   [Full Text] [Related]  

  • 3. Single nuclear pores visualized by confocal microscopy and image processing.
    Kubitscheck U; Wedekind P; Zeidler O; Grote M; Peters R
    Biophys J; 1996 May; 70(5):2067-77. PubMed ID: 9172731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular localization of porphyrins using confocal laser scanning microscopy.
    Woodburn KW; Vardaxis NJ; Hill JS; Kaye AH; Phillips DR
    Photochem Photobiol; 1991 Nov; 54(5):725-32. PubMed ID: 1724698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of the Plant Nuclear Envelope During Cell Division.
    Evans DE; Graumann K
    Methods Mol Biol; 2016; 1370():115-26. PubMed ID: 26659958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution.
    Löschberger A; Franke C; Krohne G; van de Linde S; Sauer M
    J Cell Sci; 2014 Oct; 127(Pt 20):4351-5. PubMed ID: 25146397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the nuclear envelope, pore complexes, and dense lamina of mouse liver nuclei by high resolution scanning electron microscopy.
    Kirschner RH; Rusli M; Martin TE
    J Cell Biol; 1977 Jan; 72(1):118-32. PubMed ID: 556616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear pores form de novo from both sides of the nuclear envelope.
    D'Angelo MA; Anderson DJ; Richard E; Hetzer MW
    Science; 2006 Apr; 312(5772):440-3. PubMed ID: 16627745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution three-dimensional images from confocal scanning laser microscopy. Quantitative study and mathematical correction of the effects from bleaching and fluorescence attenuation in depth.
    Rigaut JP; Vassy J
    Anal Quant Cytol Histol; 1991 Aug; 13(4):223-32. PubMed ID: 1930541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution near-field optical imaging of single nuclear pore complexes under physiological conditions.
    Höppener C; Siebrasse JP; Peters R; Kubitscheck U; Naber A
    Biophys J; 2005 May; 88(5):3681-8. PubMed ID: 15695631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal laser scanning immunofluorescence microscopy of the pulmonary surfactant system. Association of surfactant protein A with the nucleus of the alveolar type II cell.
    Bakewell WE; Smith GJ; Miller BE; Viviano CJ; Hook GE
    Lab Invest; 1993 May; 68(5):566-76. PubMed ID: 8497128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence anisotropy imaging reveals localization of meso-tetrahydroxyphenyl chlorin in the nuclear envelope.
    Foster TH; Pearson BD; Mitra S; Bigelow CE
    Photochem Photobiol; 2005; 81(6):1544-7. PubMed ID: 16178663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional laser scanning two-photon fluorescence confocal microscopy of polymer materials using a new, efficient upconverting fluorophore.
    Bhawalkar JD; Swiatkiewicz J; Pan SJ; Samarabandu JK; Liou WS; He GS; Berezney R; Cheng PC; Prasad PN
    Scanning; 1996 Nov; 18(8):562-6. PubMed ID: 8946771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear transport by laser-induced pressure transients.
    Lin TY; McAuliffe DJ; Michaud N; Zhang H; Lee S; Doukas AG; Flotte TJ
    Pharm Res; 2003 Jun; 20(6):879-83. PubMed ID: 12817891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time imaging of nuclear permeation by EGFP in single intact cells.
    Wei X; Henke VG; Strübing C; Brown EB; Clapham DE
    Biophys J; 2003 Feb; 84(2 Pt 1):1317-27. PubMed ID: 12547812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of protein distribution in cartilage using immunofluorescence and laser confocal scanning microscopy.
    Soeder S; Kuhlmann A; Aigner T
    Methods Mol Med; 2004; 101():107-25. PubMed ID: 15299213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser line-scanning confocal fluorescence imaging of the photodynamic action of aluminum and zinc phthalocyanines in V79-4 Chinese hamster fibroblasts.
    Scully AD; Ostler RB; MacRobert AJ; Parker AW; de Lara C; O'Neill P; Phillips D
    Photochem Photobiol; 1998 Aug; 68(2):199-204. PubMed ID: 9723211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential localization of lanthanum to nuclear-pore complexes.
    Shaklai M; Tavassoli M
    J Ultrastruct Res; 1982 Nov; 81(2):139-44. PubMed ID: 7143540
    [No Abstract]   [Full Text] [Related]  

  • 19. Fluorescent Labeling of the Nuclear Envelope by Localizing Green Fluorescent Protein on the Inner Nuclear Membrane.
    Taniyama T; Tsuda N; Sueda S
    ACS Chem Biol; 2018 Jun; 13(6):1463-1469. PubMed ID: 29782140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution.
    Mudumbi KC; Schirmer EC; Yang W
    Nat Commun; 2016 Aug; 7():12562. PubMed ID: 27558844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.