These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9348742)

  • 21. [Prognostication of the dose modifying factor in consecutive thermo-radiation exposure of yeast cells].
    Komorov VP; Averin VI; Lisovskiĭ MA; Petin VG
    Radiats Biol Radioecol; 1994; 34(3):342-8. PubMed ID: 8069365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of photodynamic treatment and either hyperthermia or ionizing radiation and of ionizing radiation and hyperthermia with respect to cell killing of L929 fibroblasts, Chinese hamster ovary cells, and T24 human bladder carcinoma cells.
    Prinsze C; Penning LC; Dubbelman TM; VanSteveninck J
    Cancer Res; 1992 Jan; 52(1):117-20. PubMed ID: 1727371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of Bacillus subtilis spores as a possible bioindicator for evaluation of the microbicidal efficacy of radiation processing of water.
    Pribil W; Gehringer P; Eschweiler H; Cabaj A; Haider T; Sommer R
    Water Environ Res; 2007 Jul; 79(7):720-4. PubMed ID: 17710916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals.
    Setlow P
    J Appl Microbiol; 2006 Sep; 101(3):514-25. PubMed ID: 16907802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exposure rate as a determinant of the synergistic interaction of heat combined with ionizing or ultraviolet radiation in cell killing.
    Kim JK; Petin VG; Zhurakovskaya GP
    J Radiat Res; 2001 Dec; 42(4):361-9. PubMed ID: 11951660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionizing radiation-initiated degradation of DNA in germinating spores.
    Cyr WH; Pollard EC
    Radiat Res; 1972 Nov; 52(2):409-18. PubMed ID: 4629963
    [No Abstract]   [Full Text] [Related]  

  • 27. [Small doses and synergistic interaction of environmental factors].
    Petin VG; Zhurakovskaia GP; Pantiukhina AG; Rassokhina AV
    Radiats Biol Radioecol; 1999; 39(1):113-26. PubMed ID: 10347606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluence rate as a determinant of synergistic interaction under simultaneous action of UV light and mild heat in Saccharomyces cerevisiae.
    Petin VG; Zhurakovskaya GP; Komarova LN
    J Photochem Photobiol B; 1997 Apr; 38(2-3):123-8. PubMed ID: 9203373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the interdependence of thermal and electromagnetic effects in the response of Bacillus subtilis spores to microwave exposure.
    Wayland JR; Brannen JP; Morris ME
    Radiat Res; 1977 Jul; 71(1):251-8. PubMed ID: 406639
    [No Abstract]   [Full Text] [Related]  

  • 30. Inactivation of Bacillus subtilis spores by combined pulsed light and thermal treatments.
    Artíguez ML; Martínez de Marañón I
    Int J Food Microbiol; 2015 Dec; 214():31-37. PubMed ID: 26225755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen effect on mutagenic ionizing radiation damage in Bacillus subtilis spores of DNA polymerase I-proficient and -deficient strains.
    Tanooka H
    Radiat Res; 1980 Feb; 81(2):319-22. PubMed ID: 6767265
    [No Abstract]   [Full Text] [Related]  

  • 32. [Prognosis of yeast cells recovery after simultaneous exposure to UV-radiation and hyperthermia].
    Komarova LN; Tkhabisimova MD; Petin VG
    Tsitologiia; 2007; 49(1):83-8. PubMed ID: 17432612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dry-heat inactivation of Bacillus subtilis spores by means of infra-red heating.
    Molin G; Ostilund K
    Antonie Van Leeuwenhoek; 1975; 41(3):329-35. PubMed ID: 813576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Mathematical model of yeast cell recovery after combined exposure to ionizing radiation and hyperthermia].
    Komarov VP; Petin VG
    Radiobiologiia; 1984; 24(5):700-3. PubMed ID: 6505166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MODIFICATIONS OF THE INACTIVATION BY IONIZING RADIATIONS OF THE IONIZING RADIATIONS OF THE TRANSFORMING ACTIVITY OF DNA IN SPORES AND DRY CELLS.
    TANOOKA H; HUTCHINSON F
    Radiat Res; 1965 Jan; 24():43-56. PubMed ID: 14272815
    [No Abstract]   [Full Text] [Related]  

  • 36. Radiation resistance of spores of Bacillus subtilis and B. stearothermophilus at various water activities.
    Härnulv BG; Snygg BG
    J Appl Bacteriol; 1973 Dec; 36(4):677-82. PubMed ID: 4207058
    [No Abstract]   [Full Text] [Related]  

  • 37. Synergistic interaction of photodynamic treatment with the sensitizer aluminum phthalocyanine and hyperthermia on loss of clonogenicity of CHO cells.
    Rasch MH; Tijssen K; VanSteveninck J; Dubbelman TM
    Photochem Photobiol; 1996 Sep; 64(3):586-93. PubMed ID: 8806235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radiation inactivation and recombination repair in Bacillus subtilis spores.
    Sadaie Y; Kada T
    Mutat Res; 1973 Jan; 17(1):138-41. PubMed ID: 4630059
    [No Abstract]   [Full Text] [Related]  

  • 39. Problems, pitfalls, perspectives and potentials of quantitative theoretical models for cellular radiation action.
    Kiefer J
    Mutat Res; 1993 Sep; 289(1):27-37. PubMed ID: 7689159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The concept of synergism in radiobiology].
    Petin VG; Riabchenko NI; Surinov BP
    Radiats Biol Radioecol; 1997; 37(4):482-7. PubMed ID: 9599601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.