These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. The biologic effects of growth factor-toxin conjugates in models of vascular injury depend on dose, mode of delivery, and animal species. Yu C; Cunningham M; Rogers C; Dinbergs ID; Edelman ER J Pharm Sci; 1998 Nov; 87(11):1300-4. PubMed ID: 9811480 [TBL] [Abstract][Full Text] [Related]
29. Control of smooth muscle cell proliferation by psoralen photochemotherapy. Sumpio BE; Phan SM; Gasparro FP; Deckelbaum LI J Vasc Surg; 1993 Jun; 17(6):1010-6; discussion 1016-8. PubMed ID: 8505779 [TBL] [Abstract][Full Text] [Related]
30. Differential regulation of acidic and basic fibroblast growth factor gene expression in fibroblast growth factor-treated rat aortic smooth muscle cells. Alberts GF; Hsu DK; Peifley KA; Winkles JA Circ Res; 1994 Aug; 75(2):261-7. PubMed ID: 7518361 [TBL] [Abstract][Full Text] [Related]
31. Basic fibroblast growth factor antagonizes transforming growth factor-beta1-induced smooth muscle gene expression through extracellular signal-regulated kinase 1/2 signaling pathway activation. Kawai-Kowase K; Sato H; Oyama Y; Kanai H; Sato M; Doi H; Kurabayashi M Arterioscler Thromb Vasc Biol; 2004 Aug; 24(8):1384-90. PubMed ID: 15217807 [TBL] [Abstract][Full Text] [Related]
32. Significance of dosimetry in photodynamic therapy of injured arteries: classification of biological responses. Adili F; Statius van Eps RG; LaMuraglia GM Photochem Photobiol; 1999 Oct; 70(4):663-8. PubMed ID: 10546562 [TBL] [Abstract][Full Text] [Related]
33. Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells. Sterpetti AV; Cucina A; D'Angelo LS; Cardillo B; Cavallaro A Surgery; 1993 Jun; 113(6):691-9. PubMed ID: 8506528 [TBL] [Abstract][Full Text] [Related]
34. Role of basic fibroblast growth factor in vascular lesion formation. Lindner V; Lappi DA; Baird A; Majack RA; Reidy MA Circ Res; 1991 Jan; 68(1):106-13. PubMed ID: 1984855 [TBL] [Abstract][Full Text] [Related]
35. Role of Galphaq in smooth muscle cell proliferation. Tanski WJ; Roztocil E; Hemady EA; Williams JA; Davies MG J Vasc Surg; 2004 Mar; 39(3):639-44. PubMed ID: 14981460 [TBL] [Abstract][Full Text] [Related]
36. Mitogen crosstalk accompanying urokinase receptor expression in stimulated vascular smooth muscle cells. Reuning U; Dixon EP; Little SP; Bang NU FEBS Lett; 1996 Aug; 392(2):125-8. PubMed ID: 8772189 [TBL] [Abstract][Full Text] [Related]
37. Mitogenic factors released from smooth muscle cells are responsible for neointimal cell proliferation after balloon catheter deendothelialization. Li Z; Moore S; Alavi MZ Exp Mol Pathol; 1995 Oct; 63(2):77-86. PubMed ID: 8941042 [TBL] [Abstract][Full Text] [Related]
38. Photodynamic therapy mediated induction of accelerated re-endothelialisation following injury to the arterial wall: implications for the prevention of postinterventional restenosis. Adili F; Scholz T; Hille M; Heckenkamp J; Barth S; Engert A; Schmitz-Rixen T Eur J Vasc Endovasc Surg; 2002 Aug; 24(2):166-75. PubMed ID: 12389241 [TBL] [Abstract][Full Text] [Related]
39. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Lindner V; Reidy MA Proc Natl Acad Sci U S A; 1991 May; 88(9):3739-43. PubMed ID: 2023924 [TBL] [Abstract][Full Text] [Related]