These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 9350012)
1. The effect of pH on the Ca2+ affinity of the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres. Parsons B; Szczesna D; Zhao J; Van Slooten G; Kerrick WG; Putkey JA; Potter JD J Muscle Res Cell Motil; 1997 Oct; 18(5):599-609. PubMed ID: 9350012 [TBL] [Abstract][Full Text] [Related]
2. The role of troponin C in modulating the Ca2+ sensitivity of mammalian skinned cardiac and skeletal muscle fibres. Palmer S; Kentish JC J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):45-60. PubMed ID: 7853225 [TBL] [Abstract][Full Text] [Related]
3. Cardiac troponin C (TnC) and a site I skeletal TnC mutant alter Ca2+ versus crossbridge contribution to force in rabbit skeletal fibres. Moreno-Gonzalez A; Fredlund J; Regnier M J Physiol; 2005 Feb; 562(Pt 3):873-84. PubMed ID: 15611027 [TBL] [Abstract][Full Text] [Related]
4. The role of troponin C in the length dependence of Ca(2+)-sensitive force of mammalian skeletal and cardiac muscles. Gulati J; Sonnenblick E; Babu A J Physiol; 1991 Sep; 441():305-24. PubMed ID: 1816378 [TBL] [Abstract][Full Text] [Related]
5. Recombinant troponin I substitution and calcium responsiveness in skinned cardiac muscle. Strauss JD; Van Eyk JE; Barth Z; Kluwe L; Wiesner RJ; Maéda K; Rüegg JC Pflugers Arch; 1996 Apr; 431(6):853-62. PubMed ID: 8927501 [TBL] [Abstract][Full Text] [Related]
6. Influence of length on force and activation-dependent changes in troponin c structure in skinned cardiac and fast skeletal muscle. Martyn DA; Gordon AM Biophys J; 2001 Jun; 80(6):2798-808. PubMed ID: 11371454 [TBL] [Abstract][Full Text] [Related]
7. Characterization of troponin-C interactions in skinned barnacle muscle: comparison with troponin-C from rabbit striated muscle. Gordon AM; Qian Y; Luo Z; Wang CK; Mondares RL; Martyn DA J Muscle Res Cell Motil; 1997 Dec; 18(6):643-53. PubMed ID: 9429158 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent probes attached to Cys 35 or Cys 84 in cardiac troponin C are differentially sensitive to Ca(2+)-dependent events in vitro and in situ. Putkey JA; Liu W; Lin X; Ahmed S; Zhang M; Potter JD; Kerrick WG Biochemistry; 1997 Jan; 36(4):970-8. PubMed ID: 9020797 [TBL] [Abstract][Full Text] [Related]
9. Effects of troponin C isoforms on pH sensitivity of contraction in mammalian fast and slow skeletal muscle fibres. Metzger JM J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):163-72. PubMed ID: 8730592 [TBL] [Abstract][Full Text] [Related]
10. Effects of cycling and rigor crossbridges on the conformation of cardiac troponin C. Hannon JD; Martyn DA; Gordon AM Circ Res; 1992 Oct; 71(4):984-91. PubMed ID: 1516169 [TBL] [Abstract][Full Text] [Related]
12. Osmotic compression of skinned cardiac and skeletal muscle bundles: effects on force generation, Ca2+ sensitivity and Ca2+ binding. Wang YP; Fuchs F J Mol Cell Cardiol; 1995 Jun; 27(6):1235-44. PubMed ID: 8531205 [TBL] [Abstract][Full Text] [Related]
13. Influence of enhanced troponin C Ca2+-binding affinity on cooperative thin filament activation in rabbit skeletal muscle. Kreutziger KL; Gillis TE; Davis JP; Tikunova SB; Regnier M J Physiol; 2007 Aug; 583(Pt 1):337-50. PubMed ID: 17584846 [TBL] [Abstract][Full Text] [Related]
14. The role of the Ca(2+) regulatory sites of skeletal troponin C in modulating muscle fibre reactivity to the Ca(2+) sensitizer bepridil. Kischel P; Bastide B; Potter JD; Mounier Y Br J Pharmacol; 2000 Dec; 131(7):1496-502. PubMed ID: 11090126 [TBL] [Abstract][Full Text] [Related]
15. The low-affinity Ca2(+)-binding sites in cardiac/slow skeletal muscle troponin C perform distinct functions: site I alone cannot trigger contraction. Sweeney HL; Brito RM; Rosevear PR; Putkey JA Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9538-42. PubMed ID: 2263608 [TBL] [Abstract][Full Text] [Related]
16. Troponin I enhances acidic pH-induced depression of Ca2+ binding to the regulatory sites in skeletal troponin C. el-Saleh SC; Solaro RJ J Biol Chem; 1988 Mar; 263(7):3274-8. PubMed ID: 2830278 [TBL] [Abstract][Full Text] [Related]
17. Contributions of troponin I and troponin C to the acidic pH-induced depression of contractile Ca2+ sensitivity in cardiotrabeculae. Ding XL; Akella AB; Gulati J Biochemistry; 1995 Feb; 34(7):2309-16. PubMed ID: 7857942 [TBL] [Abstract][Full Text] [Related]
18. Effect of Ca2+ binding properties of troponin C on rate of skeletal muscle force redevelopment. Lee RS; Tikunova SB; Kline KP; Zot HG; Hasbun JE; Minh NV; Swartz DR; Rall JA; Davis JP Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1091-9. PubMed ID: 20702687 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence changes on contractile activation in TnC(DANZ) labeled skinned rabbit psoas fibers. Huang M; Burkhoff D; Schachat F; Brandt PW J Muscle Res Cell Motil; 2001; 22(8):635-46. PubMed ID: 12222824 [TBL] [Abstract][Full Text] [Related]
20. Role of calcium and crossbridges in modulation of rates of force development and relaxation in skinned muscle fibers. Rall JA; Wahr PA Adv Exp Med Biol; 1998; 453():219-27; discussion 227-8. PubMed ID: 9889832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]