BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9350356)

  • 1. Models of CO2 concentrating mechanisms in microalgae taking into account cell and chloroplast structure.
    Fridlyand LE
    Biosystems; 1997; 44(1):41-57. PubMed ID: 9350356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible CO2 concentrating mechanism in chloroplasts of C3 plants. Role of carbonic anhydrase.
    Fridlyand LE; Kaler VL
    Gen Physiol Biophys; 1987 Dec; 6(6):617-36. PubMed ID: 3127271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of the role of a putative CO2-scavenging entity in the cyanobacterial CO2-concentrating mechanism.
    Fridlyand L; Kaplan A; Reinhold L
    Biosystems; 1996; 37(3):229-38. PubMed ID: 8924647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of the CO2-concentrating mechanism of diatoms.
    Hopkinson BM; Dupont CL; Allen AE; Morel FM
    Proc Natl Acad Sci U S A; 2011 Mar; 108(10):3830-7. PubMed ID: 21321195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum.
    Hopkinson BM
    Photosynth Res; 2014 Sep; 121(2-3):223-33. PubMed ID: 24292858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution suborganellar localization of Ca
    Yamano T; Toyokawa C; Fukuzawa H
    Protoplasma; 2018 Jul; 255(4):1015-1022. PubMed ID: 29372336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms.
    Tsuji Y; Nakajima K; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring CO2 and HCO3- permeabilities of isolated chloroplasts using a MIMS-18O approach.
    Tolleter D; Chochois V; Poiré R; Price GD; Badger MR
    J Exp Bot; 2017 Jun; 68(14):3915-3924. PubMed ID: 28637277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Wunder T; Oh ZG; Mueller-Cajar O
    Traffic; 2019 Jun; 20(6):380-389. PubMed ID: 31001862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence of the CO2-concentrating mechanism in some species of the pyrenoid-less free-living algal genus Chloromonas (Volvocales, Chlorophyta).
    Morita E; Abe T; Tsuzuki M; Fujiwara S; Sato N; Hirata A; Sonoike K; Nozaki H
    Planta; 1998 Mar; 204(3):269-76. PubMed ID: 9530871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of the carbon concentrating mechanism in chloroplasts of eukaryotic algae.
    Thoms S; Pahlow M; Wolf-Gladrow DA
    J Theor Biol; 2001 Feb; 208(3):295-313. PubMed ID: 11207092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii.
    Sinetova MA; Kupriyanova EV; Markelova AG; Allakhverdiev SI; Pronina NA
    Biochim Biophys Acta; 2012 Aug; 1817(8):1248-55. PubMed ID: 22709623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger.
    Wunder T; Cheng SLH; Lai SK; Li HY; Mueller-Cajar O
    Nat Commun; 2018 Nov; 9(1):5076. PubMed ID: 30498228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization and characterization θ carbonic anhydrases in Thalassiosira pseudonana.
    Nawaly H; Tanaka A; Toyoshima Y; Tsuji Y; Matsuda Y
    Photosynth Res; 2023 May; 156(2):217-229. PubMed ID: 36862281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrenoid loss in Chlamydomonas reinhardtii causes limitations in CO2 supply, but not thylakoid operating efficiency.
    Caspari OD; Meyer MT; Tolleter D; Wittkopp TM; Cunniffe NJ; Lawson T; Grossman AR; Griffiths H
    J Exp Bot; 2017 Jun; 68(14):3903-3913. PubMed ID: 28911055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new chloroplast envelope carbonic anhydrase activity is induced during acclimation to low inorganic carbon concentrations in Chlamydomonas reinhardtii.
    Villarejo A; Rolland N; Martínez F; Sültemeyer DF
    Planta; 2001 Jun; 213(2):286-95. PubMed ID: 11469595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External α-carbonic anhydrase and solute carrier 4 are required for bicarbonate uptake in a freshwater angiosperm.
    Huang W; Han S; Jiang H; Gu S; Li W; Gontero B; Maberly SC
    J Exp Bot; 2020 Oct; 71(19):6004-6014. PubMed ID: 32721017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrenoid Starch Sheath Is Required for LCIB Localization and the CO
    Toyokawa C; Yamano T; Fukuzawa H
    Plant Physiol; 2020 Apr; 182(4):1883-1893. PubMed ID: 32041908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained net CO2 evolution during photosynthesis by marine microorganisms.
    Tchernov D; Hassidim M; Luz B; Sukenik A; Reinhold L; Kaplan A
    Curr Biol; 1997 Oct; 7(10):723-8. PubMed ID: 9368754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.