BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9350431)

  • 21. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain.
    Oliver CN; Starke-Reed PE; Stadtman ER; Liu GJ; Carney JM; Floyd RA
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5144-7. PubMed ID: 1973301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein oxidation and enzyme susceptibility in white and gray matter with in vitro oxidative stress: relevance to brain injury from intracerebral hemorrhage.
    Hall NC; Packard BA; Hall CL; de Courten-Myers G; Wagner KR
    Cell Mol Biol (Noisy-le-grand); 2000 May; 46(3):673-83. PubMed ID: 10872754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A beta (25-35) peptide displays H2O2-like reactivity towards aqueous Fe2+, nitroxide spin probes, and synaptosomal membrane proteins.
    Butterfield DA; Martin L; Carney JM; Hensley K
    Life Sci; 1996; 58(3):217-28. PubMed ID: 9499162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative mechanisms in beta-amyloid cytotoxicity.
    Davis JB
    Neurodegeneration; 1996 Dec; 5(4):441-4. PubMed ID: 9117560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amyloid peptides are toxic via a common oxidative mechanism.
    Schubert D; Behl C; Lesley R; Brack A; Dargusch R; Sagara Y; Kimura H
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1989-93. PubMed ID: 7892213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative damage increases with age in a canine model of human brain aging.
    Head E; Liu J; Hagen TM; Muggenburg BA; Milgram NW; Ames BN; Cotman CW
    J Neurochem; 2002 Jul; 82(2):375-81. PubMed ID: 12124438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review: Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity.
    Varadarajan S; Yatin S; Aksenova M; Butterfield DA
    J Struct Biol; 2000 Jun; 130(2-3):184-208. PubMed ID: 10940225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amyloid-β peptide fibrils induce nitro-oxidative stress in neuronal cells.
    Ill-Raga G; Ramos-Fernández E; Guix FX; Tajes M; Bosch-Morató M; Palomer E; Godoy J; Belmar S; Cerpa W; Simpkins JW; Inestrosa And NC; Muñoz FJ
    J Alzheimers Dis; 2010; 22(2):641-52. PubMed ID: 20858976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone.
    Carney JM; Starke-Reed PE; Oliver CN; Landum RW; Cheng MS; Wu JF; Floyd RA
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3633-6. PubMed ID: 1673789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of high altitude and caloric restriction on reactive carbonyl derivatives and activity of glutamine synthetase in rat brain.
    Radák Z; Asano K; Fu Y; Nakamura A; Nakamoto H; Ohno H; Goto S
    Life Sci; 1998; 62(15):1317-22. PubMed ID: 9566773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system.
    Levine RL
    J Biol Chem; 1983 Oct; 258(19):11828-33. PubMed ID: 6137484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative modification of glutamine synthetase by 2,2'-azobis(2- amidinopropane) dihydrochloride.
    Ma YS; Chao CC; Stadtman ER
    Arch Biochem Biophys; 1999 Mar; 363(1):129-34. PubMed ID: 10049507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation of the active site of glutamine synthetase: conversion of arginine-344 to gamma-glutamyl semialdehyde.
    Climent I; Levine RL
    Arch Biochem Biophys; 1991 Sep; 289(2):371-5. PubMed ID: 1680314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methionine 35 oxidation reduces toxic effects of the amyloid beta-protein fragment (31-35) on human red blood cell.
    Clementi ME; Martorana GE; Pezzotti M; Giardina B; Misiti F
    Int J Biochem Cell Biol; 2004 Oct; 36(10):2066-76. PubMed ID: 15203119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide 1-42.
    Butterfield DA; Kanski J
    Peptides; 2002 Jul; 23(7):1299-309. PubMed ID: 12128086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. alpha-1-antichymotrypsin interaction with A beta (1-40) inhibits fibril formation but does not affect the peptide toxicity.
    Aksenova MV; Aksenov MY; Butterfield DA; Carney JM
    Neurosci Lett; 1996 Jun; 211(1):45-8. PubMed ID: 8809844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of spermine in amyloid beta-peptide-associated free radical-induced neurotoxicity.
    Yatin SM; Yatin M; Varadarajan S; Ain KB; Butterfield DA
    J Neurosci Res; 2001 Mar; 63(5):395-401. PubMed ID: 11223914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inactivation of Bacillus subtilis glutamine synthetase by metal-catalyzed oxidation.
    Kimura K; Sugano S
    J Biochem; 1992 Dec; 112(6):828-33. PubMed ID: 1363551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amyloid beta-peptide-associated free radical oxidative stress, neurotoxicity, and Alzheimer's disease.
    Butterfield DA; Yatin SM; Varadarajan S; Koppal T
    Methods Enzymol; 1999; 309():746-68. PubMed ID: 10507060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein oxidation and proteolysis during aging and oxidative stress.
    Starke-Reed PE; Oliver CN
    Arch Biochem Biophys; 1989 Dec; 275(2):559-67. PubMed ID: 2574564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.