These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9350433)

  • 1. Effect of aluminium ions on liposomal membranes as detected by Laurdan fluorescence.
    Dousset N; Ferretti G; Galeazzi T; Taus M; Gouaze V; Berthon G; Curatola G
    Free Radic Res; 1997 Sep; 27(3):291-9. PubMed ID: 9350433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Al(3+) and related metals on membrane phase state and hydration: correlation with lipid oxidation.
    Verstraeten SV; Oteiza PI
    Arch Biochem Biophys; 2000 Mar; 375(2):340-6. PubMed ID: 10700390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study.
    Viard M; Gallay J; Vincent M; Paternostre M
    Biophys J; 2001 Jan; 80(1):347-59. PubMed ID: 11159407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence.
    Parasassi T; De Stasio G; d'Ubaldo A; Gratton E
    Biophys J; 1990 Jun; 57(6):1179-86. PubMed ID: 2393703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of Fe(2+)-induced lipid peroxidation in phosphatidylcholine liposomes by aluminium ions at physiological pH.
    Ohyashiki T; Karino T; Matsui K
    Biochim Biophys Acta; 1993 Oct; 1170(2):182-8. PubMed ID: 8399343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence.
    Parasassi T; De Stasio G; Ravagnan G; Rusch RM; Gratton E
    Biophys J; 1991 Jul; 60(1):179-89. PubMed ID: 1883937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-induced phase transitions of lipid bilayers observed by fluorescent probes Prodan and Laurdan.
    Kusube M; Tamai N; Matsuki H; Kaneshina S
    Biophys Chem; 2005 Oct; 117(3):199-206. PubMed ID: 15961215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A marked stimulation of Fe2+-initiated lipid peroxidation in phospholipid liposomes by a lipophilic aluminum complex, aluminum acetylacetonate.
    Ohyashiki T; Suzuki S; Satoh E; Uemori Y
    Biochim Biophys Acta; 1998 Jan; 1389(2):141-9. PubMed ID: 9461255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation and dynamics of phase properties in phospholipid mixtures detected by Laurdan fluorescence.
    Parasassi T; Ravagnan G; Rusch RM; Gratton E
    Photochem Photobiol; 1993 Mar; 57(3):403-10. PubMed ID: 8475171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order.
    Harris FM; Best KB; Bell JD
    Biochim Biophys Acta; 2002 Sep; 1565(1):123-8. PubMed ID: 12225860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pb2+ promotes lipid oxidation and alterations in membrane physical properties.
    Adonaylo VN; Oteiza PI
    Toxicology; 1999 Jan; 132(1):19-32. PubMed ID: 10199578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer.
    Antollini SS; Soto MA; Bonini de Romanelli I; Gutiérrez-Merino C; Sotomayor P; Barrantes FJ
    Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe.
    Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E
    Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence studies of the interactions of ubiquinol-10 with liposomes.
    Fiorini R; Ragni L; Ambrosi S; Littarru GP; Gratton E; Hazlett T
    Photochem Photobiol; 2008; 84(1):209-14. PubMed ID: 18173722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation.
    Oteiza PI
    Arch Biochem Biophys; 1994 Feb; 308(2):374-9. PubMed ID: 8109967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation of Laurdan in Phospholipid Bilayers Influences Its Fluorescence: Quantum Mechanics and Classical Molecular Dynamics Study.
    Wasif Baig M; Pederzoli M; Jurkiewicz P; Cwiklik L; Pittner J
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30011800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between membrane water molecules and Patman equilibration kinetics at temperatures far above the phosphatidylcholine melting point.
    Vaughn AR; Bell TA; Gibbons E; Askew C; Franchino H; Hirsche K; Kemsley L; Melchor S; Moulton E; Schwab M; Nelson J; Bell JD
    Biochim Biophys Acta; 2015 Apr; 1848(4):942-50. PubMed ID: 25559316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trifluoperazine induces domain formation in zwitterionic phosphatidylcholine but not in charged phosphatidylglycerol bilayers.
    Hendrich AB; Wesolowska O; Michalak K
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):414-25. PubMed ID: 11342176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties.
    Bagatolli LA; Parasassi T; Fidelio GD; Gratton E
    Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.