These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 9350585)
1. The elastic modulus of conductance coronary arteries from spontaneously hypertensive rats is increased. Pourageaud F; Crabos M; Freslon JL J Hypertens; 1997 Oct; 15(10):1113-21. PubMed ID: 9350585 [TBL] [Abstract][Full Text] [Related]
2. Effect of pressurization on mechanical properties of mesenteric small arteries from spontaneously hypertensive rats. Laurant P; Touyz RM; Schiffrin EL J Vasc Res; 1997; 34(2):117-25. PubMed ID: 9167644 [TBL] [Abstract][Full Text] [Related]
3. Spontaneously hypertensive rat resistance artery structure related to myogenic and mechanical properties. Bund SJ Clin Sci (Lond); 2001 Oct; 101(4):385-93. PubMed ID: 11566076 [TBL] [Abstract][Full Text] [Related]
4. Calcium sensitivity and agonist-induced calcium sensitization in small arteries of young and adult spontaneously hypertensive rats. Shaw LM; Ohanian J; Heagerty AM Hypertension; 1997 Sep; 30(3 Pt 1):442-8. PubMed ID: 9314430 [TBL] [Abstract][Full Text] [Related]
5. Increased wall-lumen ratio of mesenteric vessels from the spontaneously hypertensive rat is not associated with increased contractility under isobaric conditions. Izzard AS; Bund SJ; Heagerty AM Hypertension; 1996 Oct; 28(4):604-8. PubMed ID: 8843885 [TBL] [Abstract][Full Text] [Related]
6. Contractility of resistance arteries of spontaneously hypertensive rats related to their media: lumen ratio. Bund SJ J Hypertens; 2000 Sep; 18(9):1223-31. PubMed ID: 10994753 [TBL] [Abstract][Full Text] [Related]
7. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Roque FR; Briones AM; García-Redondo AB; Galán M; Martínez-Revelles S; Avendaño MS; Cachofeiro V; Fernandes T; Vassallo DV; Oliveira EM; Salaices M Br J Pharmacol; 2013 Feb; 168(3):686-703. PubMed ID: 22994554 [TBL] [Abstract][Full Text] [Related]
8. Middle cerebral artery structure and distensibility during developing and established phases of hypertension in the spontaneously hypertensive rat. Izzard AS; Horton S; Heerkens EH; Shaw L; Heagerty AM J Hypertens; 2006 May; 24(5):875-80. PubMed ID: 16612249 [TBL] [Abstract][Full Text] [Related]
9. Liver growth factor treatment restores cell-extracellular matrix balance in resistance arteries and improves left ventricular hypertrophy in SHR. Conde MV; Gonzalez MC; Quintana-Villamandos B; Abderrahim F; Briones AM; Condezo-Hoyos L; Regadera J; Susin C; Gomez de Diego JJ; Delgado-Baeza E; Diaz-Gil JJ; Arribas SM Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H1153-65. PubMed ID: 21642499 [TBL] [Abstract][Full Text] [Related]
10. Structural remodeling of resistance arteries in uremic hypertension. New DI; Chesser AM; Thuraisingham RC; Yaqoob MM Kidney Int; 2004 May; 65(5):1818-25. PubMed ID: 15086922 [TBL] [Abstract][Full Text] [Related]
11. Endothelial and smooth muscle properties of coronary and mesenteric resistance arteries in spontaneously hypertensive rats compared to WKY rats. Pourageaud F; Freslon JL Fundam Clin Pharmacol; 1995; 9(1):37-45. PubMed ID: 7768486 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional alterations of mesenteric vascular beds in spontaneously hypertensive rats. Inoue T; Masuda T; Kishi K Jpn Heart J; 1990 May; 31(3):393-403. PubMed ID: 2214138 [TBL] [Abstract][Full Text] [Related]
13. Vascular changes at the prehypertensive phase in the mesenteric arteries from spontaneously hypertensive rats. Lee RM Blood Vessels; 1985; 22(3):105-26. PubMed ID: 4005433 [TBL] [Abstract][Full Text] [Related]
14. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats : effects of angiotensin receptor antagonism and converting enzyme inhibition. Intengan HD; Thibault G; Li JS; Schiffrin EL Circulation; 1999 Nov; 100(22):2267-75. PubMed ID: 10578002 [TBL] [Abstract][Full Text] [Related]
15. Impaired nitric oxide- and prostaglandin-mediated responses to flow in resistance arteries of hypertensive rats. Matrougui K; Maclouf J; Lévy BI; Henrion D Hypertension; 1997 Oct; 30(4):942-7. PubMed ID: 9336397 [TBL] [Abstract][Full Text] [Related]
16. Resveratrol and small artery compliance and remodeling in the spontaneously hypertensive rat. Behbahani J; Thandapilly SJ; Louis XL; Huang Y; Shao Z; Kopilas MA; Wojciechowski P; Netticadan T; Anderson HD Am J Hypertens; 2010 Dec; 23(12):1273-8. PubMed ID: 20671721 [TBL] [Abstract][Full Text] [Related]
17. Mechanical properties of mesenteric resistance arteries from Dahl salt-resistant and salt-sensitive rats: role of endothelin-1. Intengan HD; Schiffrin EL J Hypertens; 1998 Dec; 16(12 Pt 2):1907-12. PubMed ID: 9886876 [TBL] [Abstract][Full Text] [Related]
18. Altered angiotensin II-induced small artery contraction during the development of hypertension in spontaneously hypertensive rats. Endemann D; Touyz RM; Li JS; Deng LY; Schiffrin EL Am J Hypertens; 1999 Jul; 12(7):716-23. PubMed ID: 10411369 [TBL] [Abstract][Full Text] [Related]
19. Quinapril effects on resistance artery structure and function in hypertension. Yang L; Gao YJ; Lee RM Naunyn Schmiedebergs Arch Pharmacol; 2004 Dec; 370(6):444-51. PubMed ID: 15549270 [TBL] [Abstract][Full Text] [Related]
20. Contractile responses and signal transduction of endothelin-1 in aorta and mesenteric vasculature of adult spontaneously hypertensive rats. Nguyen PV; Yang XP; Li G; Deng LY; Flückiger JP; Schiffrin EL Can J Physiol Pharmacol; 1993 Jul; 71(7):473-83. PubMed ID: 8242481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]