BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 9350627)

  • 1. Electrophysiological analysis of the function of the mammalian renal peptide transporter expressed in Xenopus laevis oocytes.
    Amasheh S; Wenzel U; Weber WM; Clauss W; Daniel H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):169-74. PubMed ID: 9350627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoichiometry and kinetics of the high-affinity H+-coupled peptide transporter PepT2.
    Chen XZ; Zhu T; Smith DE; Hediger MA
    J Biol Chem; 1999 Jan; 274(5):2773-9. PubMed ID: 9915809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1.
    Steel A; Nussberger S; Romero MF; Boron WF; Boyd CA; Hediger MA
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):563-9. PubMed ID: 9051570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its asymmetry and symmetry.
    Kottra G; Daniel H
    J Physiol; 2001 Oct; 536(Pt 2):495-503. PubMed ID: 11600684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function.
    Döring F; Martini C; Walter J; Daniel H
    J Membr Biol; 2002 Mar; 186(2):55-62. PubMed ID: 11944083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of charged dipeptides by the intestinal H+/peptide symporter PepT1 expressed in Xenopus laevis oocytes.
    Amasheh S; Wenzel U; Boll M; Dorn D; Weber W; Clauss W; Daniel H
    J Membr Biol; 1997 Feb; 155(3):247-56. PubMed ID: 9050448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2.
    Zhu T; Chen XZ; Steel A; Hediger MA; Smith DE
    Pharm Res; 2000 May; 17(5):526-32. PubMed ID: 10888303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a potential substrate binding domain in the mammalian peptide transporters PEPT1 and PEPT2 using PEPT1-PEPT2 and PEPT2-PEPT1 chimeras.
    Fei YJ; Liu JC; Fujita T; Liang R; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1998 May; 246(1):39-44. PubMed ID: 9600064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms.
    Döring F; Dorn D; Bachfischer U; Amasheh S; Herget M; Daniel H
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):773-9. PubMed ID: 9003562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. USP18 Sensitivity of Peptide Transporters PEPT1 and PEPT2.
    Warsi J; Hosseinzadeh Z; Elvira B; Pelzl L; Shumilina E; Zhang DE; Lang KS; Lang PA; Lang F
    PLoS One; 2015; 10(6):e0129365. PubMed ID: 26046984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1.
    Mackenzie B; Loo DD; Fei Y; Liu WJ; Ganapathy V; Leibach FH; Wright EM
    J Biol Chem; 1996 Mar; 271(10):5430-7. PubMed ID: 8621398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport characteristics of differently charged cephalosporin antibiotics in oocytes expressing the cloned intestinal peptide transporter PepT1 and in human intestinal Caco-2 cells.
    Wenzel U; Gebert I; Weintraut H; Weber WM; Clauss W; Daniel H
    J Pharmacol Exp Ther; 1996 May; 277(2):831-9. PubMed ID: 8627565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPAK dependent regulation of peptide transporters PEPT1 and PEPT2.
    Warsi J; Dong L; Elvira B; Salker MS; Shumilina E; Hosseinzadeh Z; Lang F
    Kidney Blood Press Res; 2014; 39(4):388-98. PubMed ID: 25376088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential recognition of zwitterionic dipeptides as transportable substrates by the high-affinity peptide transporter PEPT2.
    Fei YJ; Nara E; Liu JC; Boyd CA; Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1999 May; 1418(2):344-51. PubMed ID: 10320685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological characteristics of the proton-coupled peptide transporter PEPT2 cloned from rat brain.
    Wang H; Fei YJ; Ganapathy V; Leibach FH
    Am J Physiol; 1998 Oct; 275(4):C967-75. PubMed ID: 9755050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological characterization of the flounder type II Na+/Pi cotransporter (NaPi-5) expressed in Xenopus laevis oocytes.
    Forster IC; Wagner CA; Busch AE; Lang F; Biber J; Hernando N; Murer H; Werner A
    J Membr Biol; 1997 Nov; 160(1):9-25. PubMed ID: 9351888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity and transport mode of the proton-dependent amino acid transporter mPAT2.
    Foltz M; Oechsler C; Boll M; Kottra G; Daniel H
    Eur J Biochem; 2004 Aug; 271(16):3340-7. PubMed ID: 15291811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-induced changes in the density of peptide transporter PEPT1 expressed in Xenopus oocytes.
    Mertl M; Daniel H; Kottra G
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1332-43. PubMed ID: 18799652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetry of H+ binding to the intra- and extracellular side of the H+-coupled oligopeptide cotransporter PepT1.
    Nussberger S; Steel A; Trotti D; Romero MF; Boron WF; Hediger MA
    J Biol Chem; 1997 Mar; 272(12):7777-85. PubMed ID: 9065440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel inhibitor of the mammalian peptide transporter PEPT1.
    Knütter I; Theis S; Hartrodt B; Born I; Brandsch M; Daniel H; Neubert K
    Biochemistry; 2001 Apr; 40(14):4454-8. PubMed ID: 11284702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.