These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9350859)

  • 1. Nicking by transesterification: the reaction catalysed by a relaxase.
    Byrd DR; Matson SW
    Mol Microbiol; 1997 Sep; 25(6):1011-22. PubMed ID: 9350859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific relaxase activity of a VirD2-like protein encoded within the tfs4 genomic island of Helicobacter pylori.
    Grove JI; Alandiyjany MN; Delahay RM
    J Biol Chem; 2013 Sep; 288(37):26385-96. PubMed ID: 23900838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells.
    Draper O; César CE; Machón C; de la Cruz F; Llosa M
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16385-90. PubMed ID: 16260740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1.
    Nash RP; Habibi S; Cheng Y; Lujan SA; Redinbo MR
    Nucleic Acids Res; 2010 Sep; 38(17):5929-43. PubMed ID: 20448025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxases and Plasmid Transfer in Gram-Negative Bacteria.
    Zechner EL; Moncalián G; de la Cruz F
    Curr Top Microbiol Immunol; 2017; 413():93-113. PubMed ID: 29536356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of initiation and termination reactions in conjugative DNA processing. Independence of tight substrate binding and catalytic activity of relaxase (TraI) of IncPalpha plasmid RP4.
    Pansegrau W; Lanka E
    J Biol Chem; 1996 May; 271(22):13068-76. PubMed ID: 8662726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of a new family of relaxases in Firmicutes bacteria.
    Ramachandran G; Miguel-Arribas A; Abia D; Singh PK; Crespo I; Gago-Córdoba C; Hao JA; Luque-Ortega JR; Alfonso C; Wu LJ; Boer DR; Meijer WJ
    PLoS Genet; 2017 Feb; 13(2):e1006586. PubMed ID: 28207825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and biochemical characterization of MbeA, the relaxase involved in plasmid ColE1 conjugative mobilization.
    Varsaki A; Lucas M; Afendra AS; Drainas C; de la Cruz F
    Mol Microbiol; 2003 Apr; 48(2):481-93. PubMed ID: 12675806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of DNA processing reactions in bacterial conjugation by using suicide oligonucleotides.
    Gonzalez-Perez B; Lucas M; Cooke LA; Vyle JS; de la Cruz F; Moncalián G
    EMBO J; 2007 Aug; 26(16):3847-57. PubMed ID: 17660746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of Bacillus subtilis.
    Lee CA; Grossman AD
    J Bacteriol; 2007 Oct; 189(20):7254-61. PubMed ID: 17693500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the reaction product of the oriT nicking reaction catalyzed by Escherichia coli DNA helicase I.
    Matson SW; Nelson WC; Morton BS
    J Bacteriol; 1993 May; 175(9):2599-606. PubMed ID: 8386720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concerted action of three distinct domains in the DNA cleaving-joining reaction catalyzed by relaxase (TraI) of conjugative plasmid RP4.
    Pansegrau W; Schröder W; Lanka E
    J Biol Chem; 1994 Jan; 269(4):2782-9. PubMed ID: 8300611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA processing reactions in bacterial conjugation.
    Lanka E; Wilkins BM
    Annu Rev Biochem; 1995; 64():141-69. PubMed ID: 7574478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific integration of foreign DNA into minimal bacterial and human target sequences mediated by a conjugative relaxase.
    Agúndez L; González-Prieto C; Machón C; Llosa M
    PLoS One; 2012; 7(1):e31047. PubMed ID: 22292089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Relaxase-DNA Covalent Complexes and DNA Strand Transfer Reaction Products by Polyacrylamide Gel Electrophoresis.
    Lucas M; Moncalián G
    Methods Mol Biol; 2020; 2075():145-156. PubMed ID: 31584161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore sensing reveals a preferential pathway for the co-translocational unfolding of a conjugative relaxase-DNA complex.
    Valenzuela-Gómez F; Arechaga I; Cabezón E
    Nucleic Acids Res; 2023 Jul; 51(13):6857-6869. PubMed ID: 37264907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The secret life of conjugative relaxases.
    Guzmán-Herrador DL; Llosa M
    Plasmid; 2019 Jul; 104():102415. PubMed ID: 31103521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugative transfer can be inhibited by blocking relaxase activity within recipient cells with intrabodies.
    Garcillán-Barcia MP; Jurado P; González-Pérez B; Moncalián G; Fernández LA; de la Cruz F
    Mol Microbiol; 2007 Jan; 63(2):404-16. PubMed ID: 17163977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The F-plasmid TraI protein contains three functional domains required for conjugative DNA strand transfer.
    Matson SW; Ragonese H
    J Bacteriol; 2005 Jan; 187(2):697-706. PubMed ID: 15629940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxase (TraI) of IncP alpha plasmid RP4 catalyzes a site-specific cleaving-joining reaction of single-stranded DNA.
    Pansegrau W; Schröder W; Lanka E
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2925-9. PubMed ID: 8385350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.