These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 9351207)
1. The germinability of spores of a psychrotolerant, non-proteolytic strain of Clostridium botulinum is influenced by their formation and storage temperature. Evans RI; Russell NJ; Gould GW; McClure PJ J Appl Microbiol; 1997 Sep; 83(3):273-80. PubMed ID: 9351207 [TBL] [Abstract][Full Text] [Related]
2. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme. Fernández PS; Peck MW Appl Environ Microbiol; 1999 Aug; 65(8):3449-57. PubMed ID: 10427033 [TBL] [Abstract][Full Text] [Related]
3. Comparison of viability and heat resistance of Clostridium sporogenes stored at different temperatures. Mah JH; Kang DH; Tang J J Food Sci; 2009; 74(1):M23-7. PubMed ID: 19200102 [TBL] [Abstract][Full Text] [Related]
4. Effect of temperature on spore germination and vegetative cell growth of Clostridium botulinum. Grecz N; Arvay LH Appl Environ Microbiol; 1982 Feb; 43(2):331-7. PubMed ID: 7036898 [TBL] [Abstract][Full Text] [Related]
5. Effect of lysozyme concentration, heating at 90 degrees C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum. Peck MW; Fernandez PS Lett Appl Microbiol; 1995 Jul; 21(1):50-4. PubMed ID: 7662337 [TBL] [Abstract][Full Text] [Related]
6. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum. Stringer SC; Fairbairn DA; Peck MW J Appl Microbiol; 1997 Jan; 82(1):128-36. PubMed ID: 9113882 [TBL] [Abstract][Full Text] [Related]
7. The effects of storage conditions on viability of Clostridium difficile vegetative cells and spores and toxin activity in human faeces. Freeman J; Wilcox MH J Clin Pathol; 2003 Feb; 56(2):126-8. PubMed ID: 12560391 [TBL] [Abstract][Full Text] [Related]
8. Does proximity to neighbours affect germination of spores of non-proteolytic Clostridium botulinum? Webb MD; Stringer SC; Le Marc Y; Baranyi J; Peck MW Food Microbiol; 2012 Oct; 32(1):104-9. PubMed ID: 22850380 [TBL] [Abstract][Full Text] [Related]
9. Variability in spore germination response by strains of proteolytic Clostridium botulinum types A, B and F. Alberto F; Broussolle V; Mason DR; Carlin F; Peck MW Lett Appl Microbiol; 2003; 36(1):41-5. PubMed ID: 12485340 [TBL] [Abstract][Full Text] [Related]
10. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C. Lund BM; Graham AF; George SM J Appl Bacteriol; 1988 Mar; 64(3):241-6. PubMed ID: 3290178 [TBL] [Abstract][Full Text] [Related]
11. Factors affecting growth from heat-treated spores of non-proteolytic Clostridium botulinum. Peck MW; Fairbairn DA; Lund BM Lett Appl Microbiol; 1992 Oct; 15(4):152-155. PubMed ID: 29389024 [TBL] [Abstract][Full Text] [Related]
12. Heat resistance and recovery of spores of non-proteolytic Clostridium botulinum in relation to refrigerated, processed foods with an extended shelf-life. Lund BM; Peck MW Soc Appl Bacteriol Symp Ser; 1994; 23():115S-128S. PubMed ID: 8047905 [No Abstract] [Full Text] [Related]
13. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Lindström M; Kiviniemi K; Korkeala H Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785 [TBL] [Abstract][Full Text] [Related]
14. Effect of prior refrigeration on botulinal outgrowth in perishable canned cured meat when temperature abused. Tompkin RB; Christiansen LN; Shaparis AB Appl Environ Microbiol; 1978 May; 35(5):863-6. PubMed ID: 350155 [TBL] [Abstract][Full Text] [Related]
15. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures. Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016 [TBL] [Abstract][Full Text] [Related]
16. Influence of postirradiation incubation temperature on recovery of radiation-injured Clostridium botulinum 62A spores. Chowdhury MS; Rowley DB; Anellis A; Levinson HS Appl Environ Microbiol; 1976 Jul; 32(1):172-8. PubMed ID: 788635 [TBL] [Abstract][Full Text] [Related]
17. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin. Del Torre M; Stecchini ML; Braconnier A; Peck MW Int J Food Microbiol; 2004 Nov; 96(2):115-31. PubMed ID: 15364467 [TBL] [Abstract][Full Text] [Related]
18. Growth/no growth models for heat-treated psychrotrophic Bacillus cereus spores under cold storage. Daelman J; Vermeulen A; Willemyns T; Ongenaert R; Jacxsens L; Uyttendaele M; Devlieghere F Int J Food Microbiol; 2013 Jan; 161(1):7-15. PubMed ID: 23246607 [TBL] [Abstract][Full Text] [Related]
19. Effect of storage time and temperature on the survival of Clostridium botulinum spores in acid media. Odlaug TE; Pflug IJ Appl Environ Microbiol; 1977 Jul; 34(1):30-3. PubMed ID: 18990 [TBL] [Abstract][Full Text] [Related]
20. High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Margosch D; Ehrmann MA; Buckow R; Heinz V; Vogel RF; Gänzle MG Appl Environ Microbiol; 2006 May; 72(5):3476-81. PubMed ID: 16672493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]