These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9351216)

  • 1. Utilization of starch and synthesis of a combined amylase/alpha-glucosidase by the human colonic anaerobe Bacteroides ovatus.
    Degnan BA; Macfarlane S; Macfarlane GT
    J Appl Microbiol; 1997 Sep; 83(3):359-66. PubMed ID: 9351216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Starch utilization by Bacteroides ovatus isolated from the human large intestine.
    Degnan BA; Macfarlane S; Quigley ME; Macfarlane GT
    Curr Microbiol; 1997 May; 34(5):290-6. PubMed ID: 9099629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of starch as a substrate for Bacteroides vulgatus growing in the human colon.
    McCarthy RE; Pajeau M; Salyers AA
    Appl Environ Microbiol; 1988 Aug; 54(8):1911-6. PubMed ID: 2460027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-utilization of polymerized carbon sources by Bacteroides ovatus grown in a two-stage continuous culture system.
    MacFarlane GT; Gibson GR
    Appl Environ Microbiol; 1991 Jan; 57(1):1-6. PubMed ID: 2036001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of a neopullulanase, a pullulanase, and an alpha-glucosidase to growth of Bacteroides thetaiotaomicron on starch.
    D'Elia JN; Salyers AA
    J Bacteriol; 1996 Dec; 178(24):7173-9. PubMed ID: 8955399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of different carbohydrates on growth, polysaccharidase and glycosidase production by Bacteroides ovatus, in batch and continuous culture.
    Macfarlane GT; Hay S; Macfarlane S; Gibson GR
    J Appl Bacteriol; 1990 Feb; 68(2):179-87. PubMed ID: 2318746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and biochemical characterization of a novel alpha-glucosidase from Aspergillus niveus.
    da Silva TM; Michelin M; Damásio AR; Maller A; Almeida FB; Ruller R; Ward RJ; Rosa JC; Jorge JA; Terenzi HF; Polizeli Mde L
    Antonie Van Leeuwenhoek; 2009 Nov; 96(4):569-78. PubMed ID: 19757138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification, characterization, and synergistic action of phytate-resistant alpha-amylase and alpha-glucosidase from Geobacillus thermodenitrificans HRO10.
    Ezeji TC; Bahl H
    J Biotechnol; 2006 Aug; 125(1):27-38. PubMed ID: 16581150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amylolytic activity of selected species of ruminal bacteria.
    Cotta MA
    Appl Environ Microbiol; 1988 Mar; 54(3):772-6. PubMed ID: 2454075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellodextrin utilization and beta-glucosidase production by Bacteroides polypragmatus.
    MacKenzie CR; Patel GB
    Arch Microbiol; 1986 Jun; 145(1):91-6. PubMed ID: 3092777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suggested alternative starch utilization system from the human gut bacterium Bacteroides thetaiotaomicron.
    Chaudet MM; Rose DR
    Biochem Cell Biol; 2016 Jun; 94(3):241-6. PubMed ID: 27093479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of a dipeptidyl arylamidase by Bacteroides splanchnicus NCTC 10825 with specificities towards glycylprolyl-x and valylalanine-x substrates.
    Macfarlane S; Macfarlane GT
    J Med Microbiol; 1997 Jul; 46(7):547-55. PubMed ID: 9236738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria.
    Wang X; Conway PL; Brown IL; Evans AJ
    Appl Environ Microbiol; 1999 Nov; 65(11):4848-54. PubMed ID: 10543795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a novel fungal alpha-glucosidase from Mortierella alliacea with high starch-hydrolytic activity.
    Tanaka Y; Aki T; Hidaka Y; Furuya Y; Kawamoto S; Shigeta S; Ono K; Suzuki O
    Biosci Biotechnol Biochem; 2002 Nov; 66(11):2415-23. PubMed ID: 12506981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of amylase by Arthrobacter psychrolactophilus.
    Smith MR; Zahnley JC
    J Ind Microbiol Biotechnol; 2005 Jul; 32(7):277-83. PubMed ID: 15931519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digestion in adult females of the leaf-footed bug Leptoglossus zonatus (Hemiptera: Coreidae) with emphasis on the glycoside hydrolases α-amylase, α-galactosidase, and α-glucosidase.
    Rocha AA; Pinto CJ; Samuels RI; Alexandre D; Silva CP
    Arch Insect Biochem Physiol; 2014 Mar; 85(3):152-63. PubMed ID: 24481987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Starch metabolism in Pseudomonas stutzeri. I. Studies on maltotetraose-forming amylase.
    Schmidt J; John M
    Biochim Biophys Acta; 1979 Jan; 566(1):88-99. PubMed ID: 365247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C.
    Costantino HR; Brown SH; Kelly RM
    J Bacteriol; 1990 Jul; 172(7):3654-60. PubMed ID: 2163383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and some properties of an extracellular alpha-amylase from Bacteroides amylophilus.
    McWethy SJ; Hartman PA
    J Bacteriol; 1977 Mar; 129(3):1537-44. PubMed ID: 14926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secreted amylolytic enzymes from Schwanniomyces occidentalis: purification by fast protein liquid chromatography (FPLC) and preliminary characterization.
    Deibel MR; Hiebsch RR; Klein RD
    Prep Biochem; 1988; 18(1):77-120. PubMed ID: 2453868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.