BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9351244)

  • 1. PIS1, a negative regulator of the action of auxin transport inhibitors in Arabidopsis thaliana.
    Fujita H; Syono K
    Plant J; 1997 Sep; 12(3):583-95. PubMed ID: 9351244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana.
    Fujita H; Syono K
    Plant Cell Physiol; 1996 Dec; 37(8):1094-101. PubMed ID: 9032965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced resistance to the cellulose biosynthetic inhibitors, thaxtomin A and isoxaben in Arabidopsis thaliana mutants, also provides specific co-resistance to the auxin transport inhibitor, 1-NPA.
    Tegg RS; Shabala SN; Cuin TA; Davies NW; Wilson CR
    BMC Plant Biol; 2013 May; 13():76. PubMed ID: 23638731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth.
    Rashotte AM; DeLong A; Muday GK
    Plant Cell; 2001 Jul; 13(7):1683-97. PubMed ID: 11449059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of auxin transport by aminopeptidases and endogenous flavonoids.
    Murphy A; Peer WA; Taiz L
    Planta; 2000 Aug; 211(3):315-24. PubMed ID: 10987549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis.
    Garbers C; DeLong A; Deruére J; Bernasconi P; Söll D
    EMBO J; 1996 May; 15(9):2115-24. PubMed ID: 8641277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative effects of auxin transport inhibitors on rhizogenesis and mycorrhizal establishment of spruce seedlings inoculated with Laccaria bicolor.
    Rincón A; Priha O; Sotta B; Bonnet M; Le Tacon F
    Tree Physiol; 2003 Aug; 23(11):785-91. PubMed ID: 12839732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis.
    Jensen PJ; Hangarter RP; Estelle M
    Plant Physiol; 1998 Feb; 116(2):455-62. PubMed ID: 9489005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis.
    Poupart J; Waddell CS
    Plant Physiol; 2000 Dec; 124(4):1739-51. PubMed ID: 11115890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Auxin Transport Inhibitor Targets Villin-Mediated Actin Dynamics to Regulate Polar Auxin Transport.
    Zou M; Ren H; Li J
    Plant Physiol; 2019 Sep; 181(1):161-178. PubMed ID: 31311831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naphthylphthalamic acid and the mechanism of polar auxin transport.
    Teale W; Palme K
    J Exp Bot; 2018 Jan; 69(2):303-312. PubMed ID: 28992080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin is required for leaf vein pattern in Arabidopsis.
    Sieburth LE
    Plant Physiol; 1999 Dec; 121(4):1179-90. PubMed ID: 10594105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters.
    Abas L; Kolb M; Stadlmann J; Janacek DP; Lukic K; Schwechheimer C; Sazanov LA; Mach L; Friml J; Hammes UZ
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443187
    [No Abstract]   [Full Text] [Related]  

  • 14. An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings.
    Zhu C; Yang N; Guo Z; Qian M; Gan L
    Plant Physiol Biochem; 2016 Aug; 105():37-44. PubMed ID: 27074220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin, actin and growth of the Arabidopsis thaliana primary root.
    Rahman A; Bannigan A; Sulaman W; Pechter P; Blancaflor EB; Baskin TI
    Plant J; 2007 May; 50(3):514-28. PubMed ID: 17419848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sHSP22 Heat Shock Protein Requires the ABI1 Protein Phosphatase to Modulate Polar Auxin Transport and Downstream Responses.
    Li Y; Li Y; Liu Y; Wu Y; Xie Q
    Plant Physiol; 2018 Mar; 176(3):2406-2425. PubMed ID: 29288233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport.
    Muday GK; Haworth P
    Plant Physiol Biochem; 1994; 32(2):193-203. PubMed ID: 11540612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis.
    Reed RC; Brady SR; Muday GK
    Plant Physiol; 1998 Dec; 118(4):1369-78. PubMed ID: 9847111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport.
    Lin R; Wang H
    Plant Physiol; 2005 Jun; 138(2):949-64. PubMed ID: 15908594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport.
    Miyamoto K; Hoshino T; Yamashita M; Ueda J
    Physiol Plant; 2005 Apr; 123(4):467-74. PubMed ID: 15844285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.