These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9351260)

  • 21. Role of pulmonary surfactant protein D in innate defense against Candida albicans.
    van Rozendaal BA; van Spriel AB; van De Winkel JG; Haagsman HP
    J Infect Dis; 2000 Sep; 182(3):917-22. PubMed ID: 10950789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages.
    Maródi L; Korchak HM; Johnston RB
    J Immunol; 1991 Apr; 146(8):2783-9. PubMed ID: 1901885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of an in vitro model for the multi-parametric quantification of the cellular interactions between Candida yeasts and phagocytes.
    Dementhon K; El-Kirat-Chatel S; Noël T
    PLoS One; 2012; 7(3):e32621. PubMed ID: 22479332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages.
    Porcaro I; Vidal M; Jouvert S; Stahl PD; Giaimis J
    J Leukoc Biol; 2003 Aug; 74(2):206-15. PubMed ID: 12885937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Candida and candidaemia. Susceptibility and epidemiology.
    Arendrup MC
    Dan Med J; 2013 Nov; 60(11):B4698. PubMed ID: 24192246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effector function of leucocytes from susceptible and resistant mice against distinct isolates of Candida albicans.
    Hu Y; Farah CS; Ashman RB
    Immunol Cell Biol; 2006 Oct; 84(5):455-60. PubMed ID: 16869942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The role of serum factors in phagocytosis of Candida albicans by rabbit macrophages].
    Kotulová D; Ferencík M
    Bratisl Lek Listy; 1988 Jun; 89(6):437-42. PubMed ID: 3044530
    [No Abstract]   [Full Text] [Related]  

  • 28. Influence of Candida krusei and Candida glabrata on Candida albicans gene expression in in vitro biofilms.
    Barros PP; Ribeiro FC; Rossoni RD; Junqueira JC; Jorge AO
    Arch Oral Biol; 2016 Apr; 64():92-101. PubMed ID: 26803674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance.
    Krcmery V; Barnes AJ
    J Hosp Infect; 2002 Apr; 50(4):243-60. PubMed ID: 12014897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neutrophil activation by Candida glabrata but not Candida albicans promotes fungal uptake by monocytes.
    Duggan S; Essig F; Hünniger K; Mokhtari Z; Bauer L; Lehnert T; Brandes S; Häder A; Jacobsen ID; Martin R; Figge MT; Kurzai O
    Cell Microbiol; 2015 Sep; 17(9):1259-76. PubMed ID: 25850517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ingested aggregates of ultrafine carbon particles and interferon-gamma impair rat alveolar macrophage function.
    Lundborg M; Johansson A; Lâstbom L; Camner P
    Environ Res; 1999 Nov; 81(4):309-15. PubMed ID: 10581109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adhesion and colonisation of Candida krusei on host surfaces.
    Samaranayake YH; Wu PC; Samaranayake LP; So M; Yuen KY
    J Med Microbiol; 1994 Oct; 41(4):250-8. PubMed ID: 7932617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene.
    de Barros PP; Freire F; Rossoni RD; Junqueira JC; Jorge AOC
    Folia Microbiol (Praha); 2017 Jul; 62(4):317-323. PubMed ID: 28164244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of pathogenesis and host immune responses to Candida glabrata and Candida albicans in systemically infected immunocompetent mice.
    Brieland J; Essig D; Jackson C; Frank D; Loebenberg D; Menzel F; Arnold B; DiDomenico B; Hare R
    Infect Immun; 2001 Aug; 69(8):5046-55. PubMed ID: 11447185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipopolysaccharide-induced stimulation of alveolar macrophage opsonin-independent phagocytosis.
    Cardozo C; Edelman J; Lesser M
    J Surg Res; 1992 Aug; 53(2):170-4. PubMed ID: 1405605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes.
    Fernández-Arenas E; Bleck CK; Nombela C; Gil C; Griffiths G; Diez-Orejas R
    Cell Microbiol; 2009 Apr; 11(4):560-89. PubMed ID: 19134116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytosolic phospholipase A2 contributes to innate immune defense against Candida albicans lung infection.
    Jayaraja S; Dakhama A; Yun B; Ghosh M; Lee H; Redente EF; Uhlson CL; Murphy RC; Leslie CC
    BMC Immunol; 2016 Aug; 17(1):27. PubMed ID: 27501951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Demonstration of fungal proteinase during phagocytosis of Candida albicans and Candida tropicalis.
    Borg M; Rüchel R
    J Med Vet Mycol; 1990; 28(1):3-14. PubMed ID: 2194017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neonatal malnutrition programs the oxidant function of macrophages in response to Candida albicans.
    Costa TBD; Morais NG; Pedrosa ALF; De Albuquerque SDCG; De Castro MCAB; Pereira VRA; Cavalcanti MP; De Castro CMMB
    Microb Pathog; 2016 Jun; 95():68-76. PubMed ID: 27001703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aggregates of ultrafine particles impair phagocytosis of microorganisms by human alveolar macrophages.
    Lundborg M; Dahlén SE; Johard U; Gerde P; Jarstrand C; Camner P; Låstbom L
    Environ Res; 2006 Feb; 100(2):197-204. PubMed ID: 16171796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.