These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 9351833)

  • 61. Emerging roles of the ubiquitin-proteasome pathway in enhancing crop yield by optimizing seed agronomic traits.
    Varshney V; Majee M
    Plant Cell Rep; 2022 Sep; 41(9):1805-1826. PubMed ID: 35678849
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The identification of the Rosa S-locus and implications on the evolution of the Rosaceae gametophytic self-incompatibility systems.
    Vieira J; Pimenta J; Gomes A; Laia J; Rocha S; Heitzler P; Vieira CP
    Sci Rep; 2021 Feb; 11(1):3710. PubMed ID: 33580108
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Diverse and dynamic roles of F-box proteins in plant biology.
    Abd-Hamid NA; Ahmad-Fauzi MI; Zainal Z; Ismail I
    Planta; 2020 Feb; 251(3):68. PubMed ID: 32072251
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genome-wide association study of inflorescence length of cultivated soybean based on the high-throughout single-nucleotide markers.
    Wang J; Zhao X; Wang W; Qu Y; Teng W; Qiu L; Zheng H; Han Y; Li W
    Mol Genet Genomics; 2019 Jun; 294(3):607-620. PubMed ID: 30739204
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Inferences on specificity recognition at the Malus×domestica gametophytic self-incompatibility system.
    Pratas MI; Aguiar B; Vieira J; Nunes V; Teixeira V; Fonseca NA; Iezzoni A; van Nocker S; Vieira CP
    Sci Rep; 2018 Jan; 8(1):1717. PubMed ID: 29379047
    [TBL] [Abstract][Full Text] [Related]  

  • 66. No evidence for Fabaceae Gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes.
    Aguiar B; Vieira J; Cunha AE; Vieira CP
    BMC Plant Biol; 2015 Jun; 15():129. PubMed ID: 26032621
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparative transcriptome analysis of the petal degeneration mutant pdm in Chinese cabbage (Brassica campestris ssp. pekinensis) using RNA-Seq.
    Huang S; Liu Z; Yao R; Li D; Feng H
    Mol Genet Genomics; 2015 Oct; 290(5):1833-47. PubMed ID: 25860116
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model.
    Aguiar B; Vieira J; Cunha AE; Fonseca NA; Reboiro-Jato D; Reboiro-Jato M; Fdez-Riverola F; Raspé O; Vieira CP
    J Exp Bot; 2013 May; 64(8):2423-34. PubMed ID: 23606363
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular analysis and expression of a floral organ-relative F-box gene isolated from 'Zigui shatian' pummelo (Citrus grandis Osbeck).
    Chai L; Ge X; Biswas MK; Deng X
    Mol Biol Rep; 2011 Oct; 38(7):4429-36. PubMed ID: 21125334
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin.
    Uchiyama T; Fujino K; Ogawa T; Wakatsuki A; Kishima Y; Mikami T; Sano Y
    Plant Physiol; 2009 Nov; 151(3):1557-69. PubMed ID: 19759347
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Recombination at Prunus S-locus region SLFL1 gene.
    Vieira J; Teles E; Santos RA; Vieira CP
    Genetics; 2008 Sep; 180(1):483-91. PubMed ID: 18757935
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia.
    Souer E; Rebocho AB; Bliek M; Kusters E; de Bruin RA; Koes R
    Plant Cell; 2008 Aug; 20(8):2033-48. PubMed ID: 18713949
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Relaxed selection among duplicate floral regulatory genes in Lamiales.
    Aagaard JE; Willis JH; Phillips PC
    J Mol Evol; 2006 Oct; 63(4):493-503. PubMed ID: 17021928
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex.
    Aida M; Tasaka M
    Plant Mol Biol; 2006 Apr; 60(6):915-28. PubMed ID: 16724261
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The ubiquitin-proteasome pathway and plant development.
    Moon J; Parry G; Estelle M
    Plant Cell; 2004 Dec; 16(12):3181-95. PubMed ID: 15579807
    [No Abstract]   [Full Text] [Related]  

  • 76. Regulation of flower development in Arabidopsis by SCF complexes.
    Ni W; Xie D; Hobbie L; Feng B; Zhao D; Akkara J; Ma H
    Plant Physiol; 2004 Apr; 134(4):1574-85. PubMed ID: 15047903
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The ASK1 and ASK2 genes are essential for Arabidopsis early development.
    Liu F; Ni W; Griffith ME; Huang Z; Chang C; Peng W; Ma H; Xie D
    Plant Cell; 2004 Jan; 16(1):5-20. PubMed ID: 14688296
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis.
    Durfee T; Roe JL; Sessions RA; Inouye C; Serikawa K; Feldmann KA; Weigel D; Zambryski PC
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8571-6. PubMed ID: 12826617
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us.
    Gazzarrini S; McCourt P
    Ann Bot; 2003 May; 91(6):605-12. PubMed ID: 12714359
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis.
    Dharmasiri S; Dharmasiri N; Hellmann H; Estelle M
    EMBO J; 2003 Apr; 22(8):1762-70. PubMed ID: 12682009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.