These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9352650)

  • 1. A family of centromeric satellite DNAs from the European brown frog Rana graeca italica.
    Cardone DE; Feliciello I; Marotta M; Rosati C; Chinali G
    Genome; 1997 Oct; 40(5):774-81. PubMed ID: 9352650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S1 satellite DNA as a taxonomic marker in brown frogs: molecular evidence that Rana graeca graeca and Rana graeca italica are different species.
    Picariello O; Feliciello I; Bellinello R; Chinali G
    Genome; 2002 Feb; 45(1):63-70. PubMed ID: 11908670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical order in a satellite DNA from the European brown frog Rana dalmatina.
    Cardone DE; Feliciello I; Chinali G
    Boll Soc Ital Biol Sper; 1997; 73(5-6):85-92. PubMed ID: 9796126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species.
    Ragghianti M; Guerrini F; Bucci S; Mancino G; Hotz H; Uzzell T; Guex GD
    Chromosome Res; 1995 Dec; 3(8):497-506. PubMed ID: 8581303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S1 satellite DNA repetitive units display identical structure and overall variability in all Anatolian brown frog taxa.
    Picariello O; Feliciello I; Chinali G
    Genetica; 2016 Feb; 144(1):47-57. PubMed ID: 26662199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and preliminary characterization of two satellite-like DNA sequences from the brown frog Rana graeca.
    Rosati C; Cardone D; Feliciello I; Chinali G
    Boll Soc Ital Biol Sper; 1994; 70(8-9):207-12. PubMed ID: 7893478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical relationship between satellite I and II DNA in centromeric regions of sheep chromosomes.
    D'Aiuto L; Barsanti P; Mauro S; Cserpan I; Lanave C; Ciccarese S
    Chromosome Res; 1997 Sep; 5(6):375-81. PubMed ID: 9364939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens.
    Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization and chromosomal distribution of a species-specific transcribed centromeric satellite repeat from the olive fruit fly, Bactrocera oleae.
    Tsoumani KT; Drosopoulou E; Mavragani-Tsipidou P; Mathiopoulos KD
    PLoS One; 2013; 8(11):e79393. PubMed ID: 24244494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences.
    Saito Y; Edpalina RR; Abe S
    Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families.
    Li YC; Lee C; Hseu TH; Li SY; Lin CC
    Cytogenet Cell Genet; 2000; 89(3-4):192-8. PubMed ID: 10965121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A satellite DNA element specific for roe deer (Capreolus capreolus).
    Buntjer JB; Nijman IJ; Zijlstra C; Lenstra JA
    Chromosoma; 1998 Mar; 107(1):1-5. PubMed ID: 9567196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2005 Apr; 349():153-64. PubMed ID: 15777738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of a fish centromeric satellite DNA.
    Garrido-Ramos MA; Jamilena M; Lozano R; Ruiz Rejón C; Ruiz Rejón M
    Cytogenet Cell Genet; 1994; 65(4):233-7. PubMed ID: 8258296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two extended arrays of a satellite DNA sequence at the centromere and at the short-arm telomere of Chinese hamster chromosome 5.
    Faravelli M; Moralli D; Bertoni L; Attolini C; Chernova O; Raimondi E; Giulotto E
    Cytogenet Cell Genet; 1998; 83(3-4):281-6. PubMed ID: 10072604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alphoid-like satellite DNA sequence is present in the genome of a lacertid lizard.
    Capriglione T; De Santo MG; Odierna G; Olmo E
    J Mol Evol; 1998 Feb; 46(2):240-4. PubMed ID: 9452526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA.
    Martins C; Ferreira IA; Oliveira C; Foresti F; Galetti PM
    Genetica; 2006 May; 127(1-3):133-41. PubMed ID: 16850219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome-specific alpha-satellite DNA from the centromere of chimpanzee chromosome 4.
    Haaf T; Willard HF
    Chromosoma; 1997 Sep; 106(4):226-32. PubMed ID: 9254724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.