These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9352923)

  • 1. A tricarboxylic acid cycle intermediate regulating transcription of a chloroaromatic biodegradative pathway: fumarate-mediated repression of the clcABD operon.
    McFall SM; Abraham B; Narsolis CG; Chakrabarty AM
    J Bacteriol; 1997 Nov; 179(21):6729-35. PubMed ID: 9352923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme.
    McFall SM; Chugani SA; Chakrabarty AM
    Gene; 1998 Nov; 223(1-2):257-67. PubMed ID: 9858745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-chloromuconate and ClcR-mediated activation of the clcABD operon: in vitro transcriptional and DNase I footprint analyses.
    McFall SM; Parsek MR; Chakrabarty AM
    J Bacteriol; 1997 Jun; 179(11):3655-63. PubMed ID: 9171413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: functional and evolutionary implications.
    Parsek MR; McFall SM; Shinabarger DL; Chakrabarty AM
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12393-7. PubMed ID: 7809047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida.
    Coco WM; Rothmel RK; Henikoff S; Chakrabarty AM
    J Bacteriol; 1993 Jan; 175(2):417-27. PubMed ID: 8419291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the catBCA promoter: probing the interaction of CatR and RNA polymerase through in vitro transcription.
    Chugani SA; Parsek MR; Hershberger CD; Murakami K; Ishihama A; Chakrabarty AM
    J Bacteriol; 1997 Apr; 179(7):2221-7. PubMed ID: 9079907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNase I footprinting, DNA bending and in vitro transcription analyses of ClcR and CatR interactions with the clcABD promoter: evidence of a conserved transcriptional activation mechanism.
    McFall SM; Klem TJ; Fujita N; Ishihama A; Chakrabarty AM
    Mol Microbiol; 1997 Jun; 24(5):965-76. PubMed ID: 9220004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential DNA bending introduced by the Pseudomonas putida LysR-type regulator, CatR, at the plasmid-borne pheBA and chromosomal catBC promoters.
    Parsek MR; Kivisaar M; Chakrabarty AM
    Mol Microbiol; 1995 Mar; 15(5):819-28. PubMed ID: 7596284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9.
    Ogawa N; McFall SM; Klem TJ; Miyashita K; Chakrabarty AM
    J Bacteriol; 1999 Nov; 181(21):6697-705. PubMed ID: 10542171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of the LysR family regulator, ClcR, and its interaction with the Pseudomonas putida clcABD chlorocatechol operon promoter.
    Coco WM; Parsek MR; Chakrabarty AM
    J Bacteriol; 1994 Sep; 176(17):5530-3. PubMed ID: 8071232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida.
    Parsek MR; Shinabarger DL; Rothmel RK; Chakrabarty AM
    J Bacteriol; 1992 Dec; 174(23):7798-806. PubMed ID: 1447146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida.
    Putrinš M; Tover A; Tegova R; Saks Ü; Kivisaar M
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1860-1871. PubMed ID: 17526843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons.
    Tover A; Zernant J; Chugani SA; Chakrabarty AM; Kivisaar M
    Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():173-183. PubMed ID: 10658664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida.
    Tover A; Ojangu EL; Kivisaar M
    Microbiology (Reading); 2001 Aug; 147(Pt 8):2149-2156. PubMed ID: 11495992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function and Molecular Ecology Significance of Two Catechol-Degrading Gene Clusters in
    Shi S; Yang L; Yang C; Li S; Zhao H; Ren L; Wang X; Lu F; Li Y; Zhao H
    J Microbiol Biotechnol; 2021 Feb; 31(2):259-271. PubMed ID: 33323670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield.
    van Duuren JB; Wijte D; Leprince A; Karge B; Puchałka J; Wery J; Dos Santos VA; Eggink G; Mars AE
    J Biotechnol; 2011 Dec; 156(3):163-72. PubMed ID: 21906639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional repression mediated by LysR-type regulator CatR bound at multiple binding sites.
    Chugani SA; Parsek MR; Chakrabarty AM
    J Bacteriol; 1998 May; 180(9):2367-72. PubMed ID: 9573187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85.
    Kasak L; Hôrak R; Nurk A; Talvik K; Kivisaar M
    J Bacteriol; 1993 Dec; 175(24):8038-42. PubMed ID: 8253692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator.
    Moreno R; Rojo F
    J Bacteriol; 2008 Mar; 190(5):1539-45. PubMed ID: 18156252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.
    Kolomytseva M; Ferraroni M; Chernykh A; Golovleva L; Scozzafava A
    Biochim Biophys Acta; 2014 Sep; 1844(9):1541-9. PubMed ID: 24768773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.