These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9352928)

  • 21. Component of the Rhodospirillum centenum photosensory apparatus with structural and functional similarity to methyl-accepting chemotaxis protein chemoreceptors.
    Jiang ZY; Bauer CE
    J Bacteriol; 2001 Jan; 183(1):171-7. PubMed ID: 11114914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study of reaction centers from purple photosynthetic bacteria: Isolation and optical spectroscopy.
    Wang S; Lin S; Lin X; Woodbury NW; Allen JP
    Photosynth Res; 1994 Dec; 42(3):203-15. PubMed ID: 24306562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methylation-independent and methylation-dependent chemotaxis in Rhodobacter sphaeroides and Rhodospirillum rubrum.
    Sockett RE; Armitage JP; Evans MC
    J Bacteriol; 1987 Dec; 169(12):5808-14. PubMed ID: 3119570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium.
    Favinger J; Stadtwald R; Gest H
    Antonie Van Leeuwenhoek; 1989 Mar; 55(3):291-6. PubMed ID: 2757370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Generic interrelations of purple bacteria in the genus Rhodopseudomonas].
    Turova TP; Ivanova TL
    Mikrobiologiia; 1984; 53(2):313-7. PubMed ID: 6610816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The behavioural response of anaerobic Rhodobacter sphaeroides to temporal stimuli.
    Packer HL; Gauden DE; Armitage JP
    Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():593-599. PubMed ID: 8868434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Thiosulfate oxidation by nonsulfur purple bacteria].
    Keppen OI; Pedan LV; Rodova NA
    Mikrobiologiia; 1980; 49(5):682-6. PubMed ID: 6777642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Isolation of the photosynthetizing purple bacteria Rhodobacter sphaeroides dissociants and the study of their molecular, physiological-biochemical and morphological characteristics ].
    Ivanovskiĭ RN; Mil'ko ES; Mil'ko DM
    Mikrobiologiia; 2013; 82(2):169-75. PubMed ID: 23808141
    [No Abstract]   [Full Text] [Related]  

  • 29. Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components.
    Jiang ZY; Gest H; Bauer CE
    J Bacteriol; 1997 Sep; 179(18):5720-7. PubMed ID: 9294427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase.
    Wang X; Modak HV; Tabita FR
    J Bacteriol; 1993 Nov; 175(21):7109-14. PubMed ID: 8226655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfide utilization by purple nonsulfur bacteria.
    Hansen TA; van Gemerden H
    Arch Mikrobiol; 1972; 86(1):49-56. PubMed ID: 4628180
    [No Abstract]   [Full Text] [Related]  

  • 32. Accumulation and lethal effect of tritium (tritiated water) in Rhodopseudomonas spheroides. Under light-anaerobic and dark-aerobic conditions.
    Inomata T
    Radiat Environ Biophys; 1983; 21(4):281-94. PubMed ID: 6602996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real time computer tracking of free-swimming and tethered rotating cells.
    Poole PS; Sinclair DR; Armitage JP
    Anal Biochem; 1988 Nov; 175(1):52-8. PubMed ID: 3149876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. STUDIES ON LIGHT-INDUCED INHIBITION OF RESPIRATION IN PURPLE BACTERIA: ACTION SPECTRA FOR RHODOSPIRILLUM RUBRUM AND RHODOPSEUDOMONAS SPHEROIDES.
    FORK DC; GOEDHEER JC
    Biochim Biophys Acta; 1964 Mar; 79():249-56. PubMed ID: 14163510
    [No Abstract]   [Full Text] [Related]  

  • 35. Gain setting in Chlamydomonas reinhardtii: mechanism of phototaxis and the role of the photophobic response.
    Zacks DN; Spudich JL
    Cell Motil Cytoskeleton; 1994; 29(3):225-30. PubMed ID: 7895286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A chimeric N-terminal Escherichia coli--C-terminal Rhodobacter sphaeroides FliG rotor protein supports bidirectional E. coli flagellar rotation and chemotaxis.
    Morehouse KA; Goodfellow IG; Sockett RE
    J Bacteriol; 2005 Mar; 187(5):1695-701. PubMed ID: 15716440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How Chlamydomonas keeps track of the light once it has reached the right phototactic orientation.
    Schaller K; David R; Uhl R
    Biophys J; 1997 Sep; 73(3):1562-72. PubMed ID: 9284323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides.
    Armitage JP; Macnab RM
    J Bacteriol; 1987 Feb; 169(2):514-8. PubMed ID: 3492489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient behavior of photosynthetic organelles via Pareto optimality, identifiability, and sensitivity analysis.
    Carapezza G; Umeton R; Costanza J; Angione C; Stracquadanio G; Papini A; Lió P; Nicosia G
    ACS Synth Biol; 2013 May; 2(5):274-88. PubMed ID: 23654280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motility response of Rhodobacter sphaeroides to chemotactic stimulation.
    Poole PS; Armitage JP
    J Bacteriol; 1988 Dec; 170(12):5673-9. PubMed ID: 3263964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.