These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 9354277)
1. Ground reaction forces in horses, assessed from hoof wall deformation using artificial neural networks. Savelberg HH; Van Loon T; Schamhardt HC Equine Vet J Suppl; 1997 May; (23):6-8. PubMed ID: 9354277 [TBL] [Abstract][Full Text] [Related]
2. Investigation of forelimb hoof wall strains and hoof shape in unshod horses exercised on a treadmill at various speeds and gaits. Bellenzani MC; Merritt JS; Clarke S; Davies HM Am J Vet Res; 2012 Nov; 73(11):1735-41. PubMed ID: 23106458 [TBL] [Abstract][Full Text] [Related]
3. Variation in surface strain on the equine hoof wall at the midstep with shoeing, gait, substrate, direction of travel, and hoof shape. Thomason JJ Equine Vet J Suppl; 1998 Sep; (26):86-95. PubMed ID: 9932098 [TBL] [Abstract][Full Text] [Related]
4. Quantification of hoof deformation using optical motion capture. Burn JF; Brockington C Equine Vet J Suppl; 2001 Apr; (33):50-3. PubMed ID: 11721568 [TBL] [Abstract][Full Text] [Related]
5. Noninvasive photoelastic method to show distribution of strain in the hoof wall of a living horse. Davies HM Equine Vet J Suppl; 1997 May; (23):13-5. PubMed ID: 9354279 [TBL] [Abstract][Full Text] [Related]
6. Design and validation of a dynamometric horseshoe for the measurement of three-dimensional ground reaction force on a moving horse. Chateau H; Robin D; Simonelli T; Pacquet L; Pourcelot P; Falala S; Denoix JM; Crevier-Denoix N J Biomech; 2009 Feb; 42(3):336-40. PubMed ID: 19136114 [TBL] [Abstract][Full Text] [Related]
7. The effect of frog pressure and downward vertical load on hoof wall weight-bearing and third phalanx displacement in the horse--an in vitro study. Olivier A; Wannenburg J; Gottschalk RD; van der Linde MJ; Groeneveld HT J S Afr Vet Assoc; 2001 Dec; 72(4):217-27. PubMed ID: 12219918 [TBL] [Abstract][Full Text] [Related]
8. Associations between hoof shape and the position of the frontal plane ground reaction force vector in walking horses. Colborne GR; Routh JE; Weir KR; McKendry JE; Busschers E N Z Vet J; 2016 Mar; 64(2):76-81. PubMed ID: 26138205 [TBL] [Abstract][Full Text] [Related]
9. Hoof accelerations and ground reaction forces of Thoroughbred racehorses measured on dirt, synthetic, and turf track surfaces. Setterbo JJ; Garcia TC; Campbell IP; Reese JL; Morgan JM; Kim SY; Hubbard M; Stover SM Am J Vet Res; 2009 Oct; 70(10):1220-9. PubMed ID: 19795936 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical analysis of hoof landing and stride parameters in harness trotter horses running on different tracks of a sand beach (from wet to dry) and on an asphalt road. Chateau H; Holden L; Robin D; Falala S; Pourcelot P; Estoup P; Denoix JM; Crevier-Denoix N Equine Vet J Suppl; 2010 Nov; (38):488-95. PubMed ID: 21059050 [TBL] [Abstract][Full Text] [Related]
11. Ground reaction forces and limb function in tölting Icelandic horses. Biknevicius AR; Mullineaux DR; Clayton HM Equine Vet J; 2004 Dec; 36(8):743-7. PubMed ID: 15656508 [TBL] [Abstract][Full Text] [Related]
12. Evaluation using hoof wall strain gauges of a therapeutic shoe and a hoof cast with a heel wedge as potential supportive therapy for horses with laminitis. Hansen N; Buchner HH; Haller J; Windischbauer G Vet Surg; 2005; 34(6):630-6. PubMed ID: 16343152 [TBL] [Abstract][Full Text] [Related]
13. Instrumented treadmill for measuring vertical ground reaction forces in horses. Weishaupt MA; Hogg HP; Wiestner T; Denoth J; Stüssi E; Auer JA Am J Vet Res; 2002 Apr; 63(4):520-7. PubMed ID: 11939313 [TBL] [Abstract][Full Text] [Related]
14. Relationships between fore- and hindlimb ground reaction force and hoof deceleration patterns in trotting horses. Gustås P; Johnston C; Roepstorff L; Drevemo S; Lanshammar H Equine Vet J; 2004 Dec; 36(8):737-42. PubMed ID: 15656507 [TBL] [Abstract][Full Text] [Related]
15. Sagittal plane fore hoof unevenness is associated with fore and hindlimb asymmetrical force vectors in the sagittal and frontal planes. Hobbs SJ; Nauwelaerts S; Sinclair J; Clayton HM; Back W PLoS One; 2018; 13(8):e0203134. PubMed ID: 30157249 [TBL] [Abstract][Full Text] [Related]
16. The timing and distribution of strains around the surface of the midshaft of the third metacarpal bone during treadmill exercise in one Thoroughbred racehorse. Davies HM Aust Vet J; 2005 Mar; 83(3):157-62. PubMed ID: 15825628 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the vertical hoof force distribution in the equine forelimb with an instrumented horseboot. Barrey E Equine Vet J Suppl; 1990 Jun; (9):35-8. PubMed ID: 9259803 [TBL] [Abstract][Full Text] [Related]
18. Components of variation of surface hoof strain with time. Thomason JJ; Bignell WW; Sears W Equine Vet J Suppl; 2001 Apr; (33):63-6. PubMed ID: 11721572 [TBL] [Abstract][Full Text] [Related]
19. In vitro attenuation of impact shock in equine digits. Lanovaz JL; Clayton HM; Watson LG Equine Vet J Suppl; 1998 Sep; (26):96-102. PubMed ID: 9932099 [TBL] [Abstract][Full Text] [Related]
20. Analysis of strain and stress in the equine hoof capsule using finite element methods: comparison with principal strains recorded in vivo. Thomason JJ; McClinchey HL; Jofriet JC Equine Vet J; 2002 Nov; 34(7):719-25. PubMed ID: 12455844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]