These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 9354378)

  • 1. Dissociation of non-complementary second DNA from RecA filament without ATP hydrolysis: mechanism of search for homologous DNA.
    Ellouze C; Nordén B; Takahashi M
    J Biochem; 1997 Jun; 121(6):1070-5. PubMed ID: 9354378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination and internal exchange of two DNA molecules in a RecA filament in the presence of hydrolysing ATP. Information on ATP-RecA-DNA structure from linear dichroism spectroscopy.
    Takahashi M; Nordén B
    Eur J Biochem; 1992 Nov; 210(1):87-92. PubMed ID: 1446687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three mechanistic steps detected by FRET after presynaptic filament formation in homologous recombination. ATP hydrolysis required for release of oligonucleotide heteroduplex product from RecA.
    Gumbs OH; Shaner SL
    Biochemistry; 1998 Aug; 37(33):11692-706. PubMed ID: 9709007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further evidence for binding of three single-stranded DNA molecules by the RecA filament.
    Takahashi M; Nordén B
    J Biochem; 1995 May; 117(5):947-51. PubMed ID: 8586638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic observation of renaturation between polynucleotides with RecA in the presence of ATP hydrolysis.
    Wittung P; Nordén B; Takahashi M
    Eur J Biochem; 1994 Aug; 224(1):39-45. PubMed ID: 8076649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RecA filament maintains structural integrity using ATP-driven internal dynamics.
    Kim SH; Ahn T; Cui TJ; Chauhan S; Sung J; Joo C; Kim D
    Sci Adv; 2017 Sep; 3(9):e1700676. PubMed ID: 28913424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures.
    Chen Z; Yang H; Pavletich NP
    Nature; 2008 May; 453(7194):489-4. PubMed ID: 18497818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric analysis of binding of two consecutive DNA strands to RecA protein illuminates mechanism for recognition of homology.
    Takahashi M; Maraboeuf F; Morimatsu K; Selmane T; Fleury F; Norden B
    J Mol Biol; 2007 Jan; 365(3):603-11. PubMed ID: 17097680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA dynamics in RecA-DNA filaments: ATP hydrolysis-related flexibility in DNA.
    Ramreddy T; Sen S; Rao BJ; Krishnamoorthy G
    Biochemistry; 2003 Oct; 42(41):12085-94. PubMed ID: 14556640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry of the DNA strands within the RecA nucleofilament: role in homologous recombination.
    Prévost C; Takahashi M
    Q Rev Biophys; 2003 Nov; 36(4):429-53. PubMed ID: 15267169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of RecA-mediated recombination reactions. Without ATP hydrolysis RecA can mediate polar strand exchange but is unable to recycle.
    Rosselli W; Stasiak A
    J Mol Biol; 1990 Nov; 216(2):335-52. PubMed ID: 2147722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent inhibition of recA protein-catalyzed ATP hydrolysis by ATPgammaS: evidence for a rate-determining isomerization of the recA-ssDNA complex.
    Paulus BF; Bryant FR
    Biochemistry; 1997 Jun; 36(25):7832-8. PubMed ID: 9201926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP Hydrolysis in the RecA-DNA Filament Promotes Structural Changes at the Protein-DNA Interface.
    Reymer A; Babik S; Takahashi M; Nordén B; Beke-Somfai T
    Biochemistry; 2015 Aug; 54(30):4579-82. PubMed ID: 26196253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide dependent structural and kinetic changes in Xenopus rad51.1-DNA complex stimulating the strand exchange reaction: destacking of DNA bases and restriction of their local motion.
    Maeshima K; Maraboeuf F; Morimatsu K; Horii T; Takahashi M
    J Mol Biol; 1998 Dec; 284(3):689-97. PubMed ID: 9826508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RecA polymerization on double-stranded DNA by using single-molecule manipulation: the role of ATP hydrolysis.
    Shivashankar GV; Feingold M; Krichevsky O; Libchaber A
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7916-21. PubMed ID: 10393922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct visualization of dynamics and co-operative conformational changes within RecA filaments that appear to be associated with the hydrolysis of adenosine 5'-O-(3-thiotriphosphate).
    Yu X; Egelman EH
    J Mol Biol; 1992 May; 225(1):193-216. PubMed ID: 1583690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synaptic complex of RecA protein participates in hybridization and inverse strand exchange reactions.
    Gamper HB; Nulf CJ; Corey DR; Kmiec EB
    Biochemistry; 2003 Mar; 42(9):2643-55. PubMed ID: 12614159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of DNA intercalators in the binding of RecA to double-stranded DNA.
    Kim SK; Nordén B; Takahashi M
    J Biol Chem; 1993 Jul; 268(20):14799-804. PubMed ID: 8325858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference between active and inactive nucleotide cofactors in the effect on the DNA binding and the helical structure of RecA filament dissociation of RecA--DNA complex by inactive nucleotides.
    Ellouze C; Selmane T; Kim HK; Tuite E; Nordén B; Mortensen K; Takahashi M
    Eur J Biochem; 1999 May; 262(1):88-94. PubMed ID: 10231368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of RecA protein-DNA complexes by fluorescence-detected linear dichroism: absence of structural change of filament for pairing of complementary DNA strands.
    Morimatsu K; Takahashi M
    Anal Biochem; 2006 Nov; 358(2):192-8. PubMed ID: 17045232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.