These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 9354639)

  • 41. Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli.
    Ermolova NV; Smirnova IN; Kasho VN; Kaback HR
    Biochemistry; 2005 May; 44(21):7669-77. PubMed ID: 15909981
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proximity of periplasmic loops in the lactose permease of Escherichia coli determined by site-directed cross-linking.
    Sun J; Kaback HR
    Biochemistry; 1997 Sep; 36(39):11959-65. PubMed ID: 9305990
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and mechanism of the lactose permease of Escherichia coli.
    Abramson J; Smirnova I; Kasho V; Verner G; Kaback HR; Iwata S
    Science; 2003 Aug; 301(5633):610-5. PubMed ID: 12893935
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cysteine scanning mutagenesis of the N-terminal 32 amino acid residues in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Persson B; Schwieger J; Cohan P; Kaback HR
    Protein Sci; 1994 Feb; 3(2):240-7. PubMed ID: 8003960
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro folding of a membrane protein: effect of denaturation and renaturation on substrate binding by the lactose permease of Escherichia coli.
    He MM; Kaback HR
    Mol Membr Biol; 1998; 15(1):15-20. PubMed ID: 9595550
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Site-directed chemical cross-linking demonstrates that helix IV is close to helices VII and XI in the lactose permease.
    Wu J; Hardy D; Kaback HR
    Biochemistry; 1999 Feb; 38(6):1715-20. PubMed ID: 10026249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tilting of helix I and ligand-induced changes in the lactose permease determined by site-directed chemical cross-linking in situ.
    Wu J; Hardy D; Kaback HR
    Biochemistry; 1998 Nov; 37(45):15785-90. PubMed ID: 9843383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The last two cytoplasmic loops in the lactose permease of Escherichia coli comprise a discontinuous epitope for a monoclonal antibody.
    Sun J; Li J; Carrasco N; Kaback HR
    Biochemistry; 1997 Jan; 36(1):274-80. PubMed ID: 8993344
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proximity of helices VIII (Ala273) and IX (Met299) in the lactose permease of Escherichia coli.
    Wang Q; Voss J; Hubbell WL; Kaback HR
    Biochemistry; 1998 Apr; 37(14):4910-5. PubMed ID: 9538009
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimating loop-helix interfaces in a polytopic membrane protein by deletion analysis.
    Wolin CD; Kaback HR
    Biochemistry; 1999 Jun; 38(26):8590-7. PubMed ID: 10387107
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purification and functional characterization of the C-terminal half of the lactose permease of Escherichia coli.
    Wu J; Sun J; Kaback HR
    Biochemistry; 1996 Apr; 35(16):5213-9. PubMed ID: 8611506
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli.
    Jung K; Voss J; He M; Hubbell WL; Kaback HR
    Biochemistry; 1995 May; 34(19):6272-7. PubMed ID: 7756253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of a lactose permease mutant that binds IIAGlc in the absence of ligand.
    Sondej M; Vázquez-Ibar JL; Farshidi A; Peterkofsky A; Kaback HR
    Biochemistry; 2003 Aug; 42(30):9153-9. PubMed ID: 12885249
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cysteine-scanning mutagenesis of transmembrane domain XII and the flanking periplasmic loop in the lactose permease of EScherichia coli.
    He MM; Sun J; Kaback HR
    Biochemistry; 1996 Oct; 35(39):12909-14. PubMed ID: 8841135
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of the irreplaceable residues in the LacY alternating access mechanism.
    Zhou Y; Jiang X; Kaback HR
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12438-42. PubMed ID: 22802658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proximity between periplasmic loops in the lactose permease of Escherichia coli as determined by site-directed spin labeling.
    Sun J; Voss J; Hubbell WL; Kaback HR
    Biochemistry; 1999 Mar; 38(10):3100-5. PubMed ID: 10074363
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements.
    Carrasco N; Püttner IB; Antes LM; Lee JA; Larigan JD; Lolkema JS; Roepe PD; Kaback HR
    Biochemistry; 1989 Mar; 28(6):2533-9. PubMed ID: 2567181
    [TBL] [Abstract][Full Text] [Related]  

  • 58. From membrane to molecule to the third amino acid from the left with a membrane transport protein.
    Kaback HR; Wu J
    Q Rev Biophys; 1997 Nov; 30(4):333-64. PubMed ID: 9634651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helices IV and V that contain the major determinants for substrate binding.
    Kwaw I; Zen KC; Hu Y; Kaback HR
    Biochemistry; 2001 Sep; 40(35):10491-9. PubMed ID: 11523990
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Melibiose permease of Escherichia coli: structural organization of cosubstrate binding sites as deduced from tryptophan fluorescence analyses.
    Mus-Veteau I; Leblanc G
    Biochemistry; 1996 Sep; 35(37):12053-60. PubMed ID: 8810910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.