These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 9354641)
1. Conformational analysis of Escherichia coli 30S ribosomes containing the single-base mutations G530U, U1498G, G1401C, and C1501G and the double-base mutation G1401C/C1501G. Moine H; Nurse K; Ehresmann B; Ehresmann C; Ofengand J Biochemistry; 1997 Nov; 36(44):13700-9. PubMed ID: 9354641 [TBL] [Abstract][Full Text] [Related]
2. Translation initiation complex formation with 30 S ribosomal particles mutated at conserved positions in the 3'-minor domain of 16 S RNA. Ringquist S; Cunningham P; Weitzmann C; Formenoy L; Pleij C; Ofengand J; Gold L J Mol Biol; 1993 Nov; 234(1):14-27. PubMed ID: 8230193 [TBL] [Abstract][Full Text] [Related]
3. Structural changes in base-paired region 28 in 16 S rRNA close to the decoding region of the 30 S ribosomal subunit are correlated to changes in tRNA binding. Ericson G; Minchew P; Wollenzien P J Mol Biol; 1995 Jul; 250(4):407-19. PubMed ID: 7542348 [TBL] [Abstract][Full Text] [Related]
4. Functional analysis of the residues C770 and G771 of E. coli 16S rRNA implicated in forming the intersubunit bridge B2c of the ribosome. Kim HM; Yeom JH; Ha HJ; Kim JM; Lee K J Microbiol Biotechnol; 2007 Jul; 17(7):1204-7. PubMed ID: 18051334 [TBL] [Abstract][Full Text] [Related]
5. Conformational change in the 16S rRNA in the Escherichia coli 70S ribosome induced by P/P- and P/E-site tRNAPhe binding. Noah JW; Shapkina TG; Nanda K; Huggins W; Wollenzien P Biochemistry; 2003 Dec; 42(49):14386-96. PubMed ID: 14661949 [TBL] [Abstract][Full Text] [Related]
7. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction. Recht MI; Douthwaite S; Dahlquist KD; Puglisi JD J Mol Biol; 1999 Feb; 286(1):33-43. PubMed ID: 9931247 [TBL] [Abstract][Full Text] [Related]
8. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides. Morosyuk SV; Lee K; SantaLucia J; Cunningham PR J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of the conserved bases C1402 and A1500 in the center of the decoding domain of Escherichia coli 16 S rRNA reveals an important tertiary interaction. Vila-Sanjurjo A; Dahlberg AE J Mol Biol; 2001 May; 308(3):457-63. PubMed ID: 11327780 [TBL] [Abstract][Full Text] [Related]
10. Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. Dahlquist KD; Puglisi JD J Mol Biol; 2000 May; 299(1):1-15. PubMed ID: 10860719 [TBL] [Abstract][Full Text] [Related]
11. Some base substitutions in the leader of an Escherichia coli ribosomal RNA operon affect the structure and function of ribosomes. Evidence for a transient scaffold function of the rRNA leader. Theissen G; Thelen L; Wagner R J Mol Biol; 1993 Sep; 233(2):203-18. PubMed ID: 8377198 [TBL] [Abstract][Full Text] [Related]
12. Three dimensional model for the 16S ribosomal RNA in the Escherichia coli ribosome. Minchew P; Joy S; Bhangu R; Wollenzien P Nucleic Acids Symp Ser; 1995; (33):68-9. PubMed ID: 8643402 [TBL] [Abstract][Full Text] [Related]
13. Directed hydroxyl radical probing of 16S ribosomal RNA in 70S ribosomes from internal positions of the RNA. Newcomb LF; Noller HF Biochemistry; 1999 Jan; 38(3):945-51. PubMed ID: 9893990 [TBL] [Abstract][Full Text] [Related]
14. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution. Dube P; Bacher G; Stark H; Mueller F; Zemlin F; van Heel M; Brimacombe R J Mol Biol; 1998 Jun; 279(2):403-21. PubMed ID: 9642046 [TBL] [Abstract][Full Text] [Related]
15. Initiation factor 3-induced structural changes in the 30 S ribosomal subunit and in complexes containing tRNA(f)(Met) and mRNA. Shapkina TG; Dolan MA; Babin P; Wollenzien P J Mol Biol; 2000 Jun; 299(3):615-28. PubMed ID: 10835272 [TBL] [Abstract][Full Text] [Related]
16. Three dimensional model for the 16S ribosomal RNA that incorporates information for the mRNA track. Wollenzien P; Juzumiene D; Shapkina T; Minchew P Nucleic Acids Symp Ser; 1995; (33):76-8. PubMed ID: 8643405 [TBL] [Abstract][Full Text] [Related]
17. Specialized ribosomes allow for the study of mutations in functionally important regions in 16 S rRNA, without affecting cell growth. The identification of functional regions in the central domain of 16S rRNA. Brink MF; Nels RN; Verbeet MP; de Boer HA J Mol Biol; 1994 Apr; 237(4):368-77. PubMed ID: 8151698 [TBL] [Abstract][Full Text] [Related]
18. Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Purohit P; Stern S Nature; 1994 Aug; 370(6491):659-62. PubMed ID: 8065453 [TBL] [Abstract][Full Text] [Related]
19. Internucleotide movements during formation of 16 S rRNA-rRNA photocrosslinks and their connection to the 30 S subunit conformational dynamics. Huggins W; Ghosh SK; Nanda K; Wollenzien P J Mol Biol; 2005 Nov; 354(2):358-74. PubMed ID: 16242153 [TBL] [Abstract][Full Text] [Related]
20. Probing the rRNA environment of ribosomal protein S5 across the subunit interface and inside the 30 S subunit using tethered Fe(II). Culver GM; Heilek GM; Noller HF J Mol Biol; 1999 Feb; 286(2):355-64. PubMed ID: 9973556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]