BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 9354647)

  • 61. Human brain glyceraldehyde-3-phosphate dehydrogenase, succinic semialdehyde dehydrogenase and aldehyde dehydrogenase isozymes: substrate specificity and sensitivity to disulfiram.
    Ryzlak MT; Pietruszko R
    Alcohol Clin Exp Res; 1989 Dec; 13(6):755-61. PubMed ID: 2690658
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Metabolism of a disulfiram metabolite, S-methyl N,N-diethyldithiocarbamate, by flavin monooxygenase in human renal microsomes.
    Pike MG; Mays DC; Macomber DW; Lipsky JJ
    Drug Metab Dispos; 2001 Feb; 29(2):127-32. PubMed ID: 11159801
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A comparative study on the effects of disulfiram, cyanamide and 1-aminocyclopropanol on the acetaldehyde metabolism in rats.
    Marchner H; Tottmar O
    Acta Pharmacol Toxicol (Copenh); 1978 Sep; 43(3):219-32. PubMed ID: 707135
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [The role of aldehyde dehydrogenases in the malonic dialdehyde metabolism in the rat liver].
    Pirozhkov SV; Panchenko LF
    Biokhimiia; 1988 Sep; 53(9):1443-8. PubMed ID: 3203107
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Subcellular distribution of aldehyde dehydrogenase activities in human liver.
    Henehan GT; Ward K; Kennedy NP; Weir DG; Tipton KF
    Alcohol; 1985; 2(1):107-10. PubMed ID: 4015824
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of benzodiazepines on aldehyde dehydrogenase activity.
    Helander A; Burénius T
    Alcohol; 1995; 12(5):413-5. PubMed ID: 8519435
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of disulfiram, cyanamide and 1-aminocyclopropanol on the aldehyde dehydrogenase activity in human erythrocytes and leukocytes.
    Helander A; Tottmar O
    Pharmacol Toxicol; 1988 Oct; 63(4):262-5. PubMed ID: 2848231
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterization of cytosolic aldehyde dehydrogenase from cyclophosphamide resistant L1210 cells.
    Russo JE; Hilton J
    Cancer Res; 1988 Jun; 48(11):2963-8. PubMed ID: 3365687
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bioactivation of nitroglycerin by purified mitochondrial and cytosolic aldehyde dehydrogenases.
    Beretta M; Gruber K; Kollau A; Russwurm M; Koesling D; Goessler W; Keung WM; Schmidt K; Mayer B
    J Biol Chem; 2008 Jun; 283(26):17873-80. PubMed ID: 18450747
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inhibition of human aldehyde dehydrogenase 1 by the 4-hydroxycyclophosphamide degradation product acrolein.
    Ren S; Kalhorn TF; Slattery JT
    Drug Metab Dispos; 1999 Jan; 27(1):133-7. PubMed ID: 9884322
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inhibition of aldehyde dehydrogenases in rat brain and liver by disulfiram and coprine.
    Pettersson H; Tottmar O
    J Neurochem; 1982 Sep; 39(3):628-34. PubMed ID: 7097272
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of disulfiram on canine liver aldehyde dehydrogenase activity: in vivo inactivation in a nonrodent animal model.
    Sanny CG; Mahoney AJ; Kilmore MA; Rymas K
    Alcohol Clin Exp Res; 1988 Oct; 12(5):622-4. PubMed ID: 3067604
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites.
    Johansson B
    Acta Psychiatr Scand Suppl; 1992; 369():15-26. PubMed ID: 1471547
    [TBL] [Abstract][Full Text] [Related]  

  • 74. S-methyl N-butylthiocarbamate sulfoxide: selective carbamoylating agent for mouse mitochondrial aldehyde dehydrogenase.
    Staub RE; Quistad GB; Casida JE
    Biochem Pharmacol; 1999 Nov; 58(9):1467-73. PubMed ID: 10513990
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Diethylthiocarbamic acid methyl ester. A potent inhibitor of aldehyde dehydrogenase found in rats treated with disulfiram or diethyldithiocarbamic acid methyl ester.
    Johansson B; Petersen EN; Arnold E
    Biochem Pharmacol; 1989 Apr; 38(7):1053-9. PubMed ID: 2539814
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sheep liver cytosolic aldehyde dehydrogenase: the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases.
    Moore SA; Baker HM; Blythe TJ; Kitson KE; Kitson TM; Baker EN
    Structure; 1998 Dec; 6(12):1541-51. PubMed ID: 9862807
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Inhibition of ALDH3A1-catalyzed oxidation by chlorpropamide analogues.
    Sládek NE; Rekha GK; Lee MJ; Nagasawa HT
    Chem Biol Interact; 2001 Nov; 138(2):201-15. PubMed ID: 11672702
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mitochondrial NAD dependent aldehyde dehydrogenase either from yeast or human replaces yeast cytoplasmic NADP dependent aldehyde dehydrogenase for the aerobic growth of yeast on ethanol.
    Mukhopadhyay A; Wei B; Weiner H
    Biochim Biophys Acta; 2013 Jun; 1830(6):3391-8. PubMed ID: 23454351
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A comparative study of the inhibition of hepatic aldehyde dehydrogenases in the rat by methyltetrazolethiol, calcium carbimide, and disulfiram.
    Brien JF; Tam GS; Cameron RJ; Steenaart NA; Loomis CW
    Can J Physiol Pharmacol; 1985 May; 63(5):438-43. PubMed ID: 4041987
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pharmaceutical agents known to produce disulfiram-like reaction: effects on hepatic ethanol metabolism and brain monoamines.
    Karamanakos PN; Pappas P; Boumba VA; Thomas C; Malamas M; Vougiouklakis T; Marselos M
    Int J Toxicol; 2007; 26(5):423-32. PubMed ID: 17963129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.