BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9355728)

  • 1. A novel procedure for the efficient purification of the cystic fibrosis transmembrane conductance regulator (CFTR).
    Ramjeesingh M; Li C; Garami E; Huan LJ; Hewryk M; Wang Y; Galley K; Bear CE
    Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):17-21. PubMed ID: 9355728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the adenosinetriphosphatase and transport activities of purified cystic fibrosis transmembrane conductance regulator.
    Ketchum CJ; Rajendrakumar GV; Maloney PC
    Biochemistry; 2004 Feb; 43(4):1045-53. PubMed ID: 14744150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATPase activity of the cystic fibrosis transmembrane conductance regulator.
    Li C; Ramjeesingh M; Wang W; Garami E; Hewryk M; Lee D; Rommens JM; Galley K; Bear CE
    J Biol Chem; 1996 Nov; 271(45):28463-8. PubMed ID: 8910473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of the molecular basis for cystic fibrosis using purified reconstituted CFTR protein.
    Kogan I; Ramjeesingh M; Li C; Bear CE
    Methods Mol Med; 2002; 70():143-57. PubMed ID: 11917519
    [No Abstract]   [Full Text] [Related]  

  • 5. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner.
    Eckford PD; Li C; Ramjeesingh M; Bear CE
    J Biol Chem; 2012 Oct; 287(44):36639-49. PubMed ID: 22942289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysophosphatidylglycerol: a novel effective detergent for solubilizing and purifying the cystic fibrosis transmembrane conductance regulator.
    Huang P; Liu Q; Scarborough GA
    Anal Biochem; 1998 May; 259(1):89-97. PubMed ID: 9606148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrodiffusional ATP movement through the cystic fibrosis transmembrane conductance regulator.
    Cantiello HF; Jackson GR; Grosman CF; Prat AG; Borkan SC; Wang Y; Reisin IL; O'Riordan CR; Ausiello DA
    Am J Physiol; 1998 Mar; 274(3):C799-809. PubMed ID: 9530112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATPase assay of purified, reconstituted CFTR protein.
    Kogan I; Ramjeesingh M; Bear CE
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():133-4. PubMed ID: 15463945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single conductance pore for chloride ions formed by two cystic fibrosis transmembrane conductance regulator molecules.
    Zerhusen B; Zhao J; Xie J; Davis PB; Ma J
    J Biol Chem; 1999 Mar; 274(12):7627-30. PubMed ID: 10075649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.
    Ramjeesingh M; Ugwu F; Stratford FL; Huan LJ; Li C; Bear CE
    Biochem J; 2008 Jun; 412(2):315-21. PubMed ID: 18241200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.
    Wei S; Roessler BC; Icyuz M; Chauvet S; Tao B; Hartman JL; Kirk KL
    FASEB J; 2016 Mar; 30(3):1247-62. PubMed ID: 26606940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator).
    Ramjeesingh M; Li C; Garami E; Huan LJ; Galley K; Wang Y; Bear CE
    Biochemistry; 1999 Feb; 38(5):1463-8. PubMed ID: 9931011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease.
    Pasyk S; Li C; Ramjeesingh M; Bear CE
    Biochem J; 2009 Feb; 418(1):185-90. PubMed ID: 18945216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of ATP hydrolysis with channel gating by purified, reconstituted CFTR.
    Bear CE; Li C; Galley K; Wang Y; Garami E; Ramjeesingh M
    J Bioenerg Biomembr; 1997 Oct; 29(5):465-73. PubMed ID: 9511931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model of the cAMP activation of chloride transport by CFTR channel and the mechanism of potentiators.
    Moran O
    J Theor Biol; 2010 Jan; 262(1):73-9. PubMed ID: 19766125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore.
    Ramjeesingh M; Ugwu F; Li C; Dhani S; Huan LJ; Wang Y; Bear CE
    Biochem J; 2003 Nov; 375(Pt 3):633-41. PubMed ID: 12892562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of the Fe(iii) site promotes activation of the human cystic fibrosis transmembrane conductance regulator by high-affinity Zn(ii) binding.
    Wang G
    Metallomics; 2018 Feb; 10(2):240-247. PubMed ID: 29372915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and reconstitution of epithelial chloride channel cystic fibrosis transmembrane conductance regulator.
    Ramjeesingh M; Garami E; Galley K; Li C; Wang Y; Bear CE
    Methods Enzymol; 1999; 294():227-46. PubMed ID: 9916230
    [No Abstract]   [Full Text] [Related]  

  • 19. Purification and characterization of recombinant cystic fibrosis transmembrane conductance regulator from Chinese hamster ovary and insect cells.
    O'Riordan CR; Erickson A; Bear C; Li C; Manavalan P; Wang KX; Marshall J; Scheule RK; McPherson JM; Cheng SH
    J Biol Chem; 1995 Jul; 270(28):17033-43. PubMed ID: 7542655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A monomer is the minimum functional unit required for channel and ATPase activity of the cystic fibrosis transmembrane conductance regulator.
    Ramjeesingh M; Li C; Kogan I; Wang Y; Huan LJ; Bear CE
    Biochemistry; 2001 Sep; 40(35):10700-6. PubMed ID: 11524016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.