BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9356020)

  • 1. A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism.
    Nestorowicz A; Inagaki N; Gonoi T; Schoor KP; Wilson BA; Glaser B; Landau H; Stanley CA; Thornton PS; Seino S; Permutt MA
    Diabetes; 1997 Nov; 46(11):1743-8. PubMed ID: 9356020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews.
    Nestorowicz A; Wilson BA; Schoor KP; Inoue H; Glaser B; Landau H; Stanley CA; Thornton PS; Clement JP; Bryan J; Aguilar-Bryan L; Permutt MA
    Hum Mol Genet; 1996 Nov; 5(11):1813-22. PubMed ID: 8923011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intragenic single nucleotide polymorphism haplotype analysis of SUR1 mutations in familial hyperinsulinism.
    Glaser B; Furth J; Stanley CA; Baker L; Thornton PS; Landau H; Permutt MA
    Hum Mutat; 1999; 14(1):23-9. PubMed ID: 10447255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotype-phenotype correlations in children with congenital hyperinsulinism due to recessive mutations of the adenosine triphosphate-sensitive potassium channel genes.
    Henwood MJ; Kelly A; Macmullen C; Bhatia P; Ganguly A; Thornton PS; Stanley CA
    J Clin Endocrinol Metab; 2005 Feb; 90(2):789-94. PubMed ID: 15562009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic heterogeneity in familial hyperinsulinism.
    Nestorowicz A; Glaser B; Wilson BA; Shyng SL; Nichols CG; Stanley CA; Thornton PS; Permutt MA
    Hum Mol Genet; 1998 Jul; 7(7):1119-28. PubMed ID: 9618169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy.
    Thomas P; Ye Y; Lightner E
    Hum Mol Genet; 1996 Nov; 5(11):1809-12. PubMed ID: 8923010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical and molecular characterization of a dominant form of congenital hyperinsulinism caused by a mutation in the high-affinity sulfonylurea receptor.
    Thornton PS; MacMullen C; Ganguly A; Ruchelli E; Steinkrauss L; Crane A; Aguilar-Bryan L; Stanley CA
    Diabetes; 2003 Sep; 52(9):2403-10. PubMed ID: 12941782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy.
    Cartier EA; Conti LR; Vandenberg CA; Shyng SL
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2882-7. PubMed ID: 11226335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia.
    Verkarre V; Fournet JC; de Lonlay P; Gross-Morand MS; Devillers M; Rahier J; Brunelle F; Robert JJ; Nihoul-Fékété C; Saudubray JM; Junien C
    J Clin Invest; 1998 Oct; 102(7):1286-91. PubMed ID: 9769320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy.
    Shyng SL; Ferrigni T; Shepard JB; Nestorowicz A; Glaser B; Permutt MA; Nichols CG
    Diabetes; 1998 Jul; 47(7):1145-51. PubMed ID: 9648840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of Japanese patients with persistent hyperinsulinemic hypoglycemia of infancy: nucleotide-binding fold-2 mutation impairs cooperative binding of adenine nucleotides to sulfonylurea receptor 1.
    Tanizawa Y; Matsuda K; Matsuo M; Ohta Y; Ochi N; Adachi M; Koga M; Mizuno S; Kajita M; Tanaka Y; Tachibana K; Inoue H; Furukawa S; Amachi T; Ueda K; Oka Y
    Diabetes; 2000 Jan; 49(1):114-20. PubMed ID: 10615958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Congenital hyperinsulinism: molecular basis of a heterogeneous disease.
    Meissner T; Beinbrech B; Mayatepek E
    Hum Mutat; 1999; 13(5):351-61. PubMed ID: 10338089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Congenital hyperinsulinism and glucose hypersensitivity in homozygous and heterozygous carriers of Kir6.2 (KCNJ11) mutation V290M mutation: K(ATP) channel inactivation mechanism and clinical management.
    Loechner KJ; Akrouh A; Kurata HT; Dionisi-Vici C; Maiorana A; Pizzoferro M; Rufini V; de Ville de Goyet J; Colombo C; Barbetti F; Koster JC; Nichols CG
    Diabetes; 2011 Jan; 60(1):209-17. PubMed ID: 20980454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a familial hyperinsulinism-causing mutation in the sulfonylurea receptor 1 that prevents normal trafficking and function of KATP channels.
    Taschenberger G; Mougey A; Shen S; Lester LB; LaFranchi S; Shyng SL
    J Biol Chem; 2002 May; 277(19):17139-46. PubMed ID: 11867634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotypes of the pancreatic beta-cell K-ATP channel and clinical phenotypes of Japanese patients with persistent hyperinsulinaemic hypoglycaemia of infancy.
    Ohkubo K; Nagashima M; Naito Y; Taguchi T; Suita S; Okamoto N; Fujinaga H; Tsumura K; Kikuchi K; Ono J
    Clin Endocrinol (Oxf); 2005 Apr; 62(4):458-65. PubMed ID: 15807877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Severe congenital hyperinsulinism caused by a mutation in the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium channel impairing trafficking and function.
    Marthinet E; Bloc A; Oka Y; Tanizawa Y; Wehrle-Haller B; Bancila V; Dubuis JM; Philippe J; Schwitzgebel VM
    J Clin Endocrinol Metab; 2005 Sep; 90(9):5401-6. PubMed ID: 15998776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism.
    Partridge CJ; Beech DJ; Sivaprasadarao A
    J Biol Chem; 2001 Sep; 276(38):35947-52. PubMed ID: 11457841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice.
    Seino S; Iwanaga T; Nagashima K; Miki T
    Diabetes; 2000 Mar; 49(3):311-8. PubMed ID: 10868950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulated expression of adenosine triphosphate-sensitive potassium channel subunits in pancreatic beta-cells.
    Moritz W; Leech CA; Ferrer J; Habener JF
    Endocrinology; 2001 Jan; 142(1):129-38. PubMed ID: 11145575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular biology of adenosine triphosphate-sensitive potassium channels.
    Aguilar-Bryan L; Bryan J
    Endocr Rev; 1999 Apr; 20(2):101-35. PubMed ID: 10204114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.