These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

745 related articles for article (PubMed ID: 9356386)

  • 21. Fidelity of the ensemble code for visual motion in primate retina.
    Frechette ES; Sher A; Grivich MI; Petrusca D; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2005 Jul; 94(1):119-35. PubMed ID: 15625091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computing complex visual features with retinal spike times.
    Gütig R; Gollisch T; Sompolinsky H; Meister M
    PLoS One; 2013; 8(1):e53063. PubMed ID: 23301021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redundancy in the population code of the retina.
    Puchalla JL; Schneidman E; Harris RA; Berry MJ
    Neuron; 2005 May; 46(3):493-504. PubMed ID: 15882648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interspike interval based filtering of directional selective retinal ganglion cells spike trains.
    Martiniuc AV; Knoll A
    Comput Intell Neurosci; 2012; 2012():918030. PubMed ID: 22919373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Information theoretic analysis of pulmonary stretch receptor spike trains.
    Rogers RF; Runyan JD; Vaidyanathan AG; Schwaber JS
    J Neurophysiol; 2001 Jan; 85(1):448-61. PubMed ID: 11152746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How retinal ganglion cells prevent synaptic noise from reaching the spike output.
    Demb JB; Sterling P; Freed MA
    J Neurophysiol; 2004 Oct; 92(4):2510-9. PubMed ID: 15175375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recording spikes from a large fraction of the ganglion cells in a retinal patch.
    Segev R; Goodhouse J; Puchalla J; Berry MJ
    Nat Neurosci; 2004 Oct; 7(10):1154-61. PubMed ID: 15452581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Information processing in the primate retina: circuitry and coding.
    Field GD; Chichilnisky EJ
    Annu Rev Neurosci; 2007; 30():1-30. PubMed ID: 17335403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A point-process matched filter for event detection and decoding from population spike trains.
    Sadras N; Pesaran B; Shanechi MM
    J Neural Eng; 2019 Oct; 16(6):066016. PubMed ID: 31437831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual coding with a population of direction-selective neurons.
    Fiscella M; Franke F; Farrow K; Müller J; Roska B; da Silveira RA; Hierlemann A
    J Neurophysiol; 2015 Oct; 114(4):2485-99. PubMed ID: 26289471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processing of natural temporal stimuli by macaque retinal ganglion cells.
    van Hateren JH; Rüttiger L; Sun H; Lee BB
    J Neurosci; 2002 Nov; 22(22):9945-60. PubMed ID: 12427852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the impact of common noise inputs on the network activity of retinal ganglion cells.
    Vidne M; Ahmadian Y; Shlens J; Pillow JW; Kulkarni J; Litke AM; Chichilnisky EJ; Simoncelli E; Paninski L
    J Comput Neurosci; 2012 Aug; 33(1):97-121. PubMed ID: 22203465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoding of temporal visual information from electrically evoked retinal ganglion cell activities in photoreceptor-degenerated retinas.
    Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6271-8. PubMed ID: 21680865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal frequency responses of cat retinal ganglion cells.
    Frishman LJ; Freeman AW; Troy JB; Schweitzer-Tong DE; Enroth-Cugell C
    J Gen Physiol; 1987 Apr; 89(4):599-628. PubMed ID: 3585279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rank Order Coding: a Retinal Information Decoding Strategy Revealed by Large-Scale Multielectrode Array Retinal Recordings.
    Portelli G; Barrett JM; Hilgen G; Masquelier T; Maccione A; Di Marco S; Berdondini L; Kornprobst P; Sernagor E
    eNeuro; 2016; 3(3):. PubMed ID: 27275008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation.
    Fried SI; Hsueh HA; Werblin FS
    J Neurophysiol; 2006 Feb; 95(2):970-8. PubMed ID: 16236780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial and temporal correlations of spike trains in frog retinal ganglion cells.
    Liu WZ; Jing W; Li H; Gong HQ; Liang PJ
    J Comput Neurosci; 2011 Jun; 30(3):543-53. PubMed ID: 20865311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model.
    Pillow JW; Paninski L; Uzzell VJ; Simoncelli EP; Chichilnisky EJ
    J Neurosci; 2005 Nov; 25(47):11003-13. PubMed ID: 16306413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Information transmission rate changes of retinal ganglion cells during contrast adaptation.
    Jin X; Chen AH; Gong HQ; Liang PJ
    Brain Res; 2005 Sep; 1055(1-2):156-64. PubMed ID: 16099436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complex spike-event pattern of transient ON-OFF retinal ganglion cells.
    Greschner M; Thiel A; Kretzberg J; Ammermüller J
    J Neurophysiol; 2006 Dec; 96(6):2845-56. PubMed ID: 16914608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.