These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 9357063)
1. Effect of excitatory amino acids on rat hypothalamic somatostatin secretion in vitro. Joanny P; Steinberg J; Oliver C; Grino M Peptides; 1997; 18(7):1039-43. PubMed ID: 9357063 [TBL] [Abstract][Full Text] [Related]
2. Glutamate and N-methyl-D-aspartate stimulate rat hypothalamic corticotropin-releasing factor secretion in vitro. Joanny P; Steinberg J; Oliver C; Grino M J Neuroendocrinol; 1997 Feb; 9(2):93-7. PubMed ID: 9041361 [TBL] [Abstract][Full Text] [Related]
3. The effect of excitatory aminoacids on GABA release from mediobasal hypothalamus of female rats. Lasaga M; De Laurentiis A; Pampillo M; Pisera D; del Carmen Díaz M; Theas S; Duvilanski B; Seilicovich A Neurosci Lett; 1998 May; 247(2-3):119-22. PubMed ID: 9655607 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the glutamate receptors mediating release of somatostatin from cultured hippocampal neurons. Fontana G; De Bernardi R; Ferro F; Gemignani A; Raiteri M J Neurochem; 1996 Jan; 66(1):161-8. PubMed ID: 8522949 [TBL] [Abstract][Full Text] [Related]
5. The effects of ionotropic agonists of excitatory amino acids on the release of arginine vasopressin in rat hypothalamic slices. Joanny P; Steinberg J; Guerrero F; Sauze N; Oliver C; Grino M J Neuroendocrinol; 2000 Oct; 12(10):970-6. PubMed ID: 11012837 [TBL] [Abstract][Full Text] [Related]
6. Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas. Bertrand G; Gross R; Puech R; Loubatières-Mariani MM; Bockaert J Br J Pharmacol; 1992 Jun; 106(2):354-9. PubMed ID: 1382779 [TBL] [Abstract][Full Text] [Related]
7. Differential desensitization of ionotropic non-NMDA receptors having distinct neuronal location and function. Pittaluga A; Bonfanti A; Raiteri M Naunyn Schmiedebergs Arch Pharmacol; 1997 Jul; 356(1):29-38. PubMed ID: 9228187 [TBL] [Abstract][Full Text] [Related]
8. Differential effects of the N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors of the excitatory amino acids system on LH and FSH secretion. Its effects on the hypothalamic luteinizing hormone releasing hormone during maturation in male rats. Carbone S; Szwarcfarb B; Rondina D; Feleder C; Moguilevsky JA Brain Res; 1996 Jan; 707(2):139-45. PubMed ID: 8919290 [TBL] [Abstract][Full Text] [Related]
9. Somatostatin release by glutamate in vivo is primarily regulated by AMPA receptors. Hathway GJ; Humphrey PP; Kendrick KM Br J Pharmacol; 2001 Nov; 134(6):1155-8. PubMed ID: 11704634 [TBL] [Abstract][Full Text] [Related]
10. Stimulatory effects of centrally injected kainate and N-methyl-D-aspartate on gastric acid secretion in anesthetized rats. Tsuchiya S; Horie S; Yano S; Watanabe K Brain Res; 2001 Sep; 914(1-2):115-22. PubMed ID: 11578604 [TBL] [Abstract][Full Text] [Related]
11. Excitatory amino acids and synaptic transmission in embryonic rat brainstem motoneurons in organotypic culture. Launey T; Ivanov A; Kapus G; Ferrand N; Tarnawa I; Gueritaud JP Eur J Neurosci; 1999 Apr; 11(4):1324-34. PubMed ID: 10103128 [TBL] [Abstract][Full Text] [Related]
12. Regulation of substantia nigra pars reticulata neuronal activity by excitatory amino acids. Schmitt P; Souliere F; Dugast C; Chouvet G Naunyn Schmiedebergs Arch Pharmacol; 1999 Oct; 360(4):402-12. PubMed ID: 10551277 [TBL] [Abstract][Full Text] [Related]
13. NMDA and kainate-evoked release of nitric oxide and classical transmitters in the rat striatum: in vivo evidence that nitric oxide may play a neuroprotective role. Kendrick KM; Guevara-Guzman R; de la Riva C; Christensen J; Ostergaard K; Emson PC Eur J Neurosci; 1996 Dec; 8(12):2619-34. PubMed ID: 8996812 [TBL] [Abstract][Full Text] [Related]
14. Contribution of spinal glutamatergic receptors to the antinociception caused by agmatine in mice. Gadotti VM; Tibola D; Paszcuk AF; Rodrigues AL; Calixto JB; Santos AR Brain Res; 2006 Jun; 1093(1):116-22. PubMed ID: 16765330 [TBL] [Abstract][Full Text] [Related]
15. Effects of glutamate receptor agonists and antagonists on Ca2+ uptake in rat hippocampal slices lesioned by glucose deprivation or by kainate. Alici K; Gloveli T; Schmitz D; Heinemann U Neuroscience; 1997 Mar; 77(1):97-109. PubMed ID: 9044378 [TBL] [Abstract][Full Text] [Related]
16. Ionotropic glutamate receptor types leading to adenosine-mediated inhibition of electrically evoked [3H]-noradrenaline release in rabbit brain cortex slices. von Kügelgen I; Späth L; Starke K Br J Pharmacol; 1993 Dec; 110(4):1544-50. PubMed ID: 7508327 [TBL] [Abstract][Full Text] [Related]
17. Regulation of cerebral microvessels by glutamatergic mechanisms. Fergus A; Lee KS Brain Res; 1997 Apr; 754(1-2):35-45. PubMed ID: 9134957 [TBL] [Abstract][Full Text] [Related]
18. Intracerebral microdialysis combined with recording of extracellular field potential: a novel method for investigation of depolarizing drugs in vivo. Obrenovitch TP; Urenjak J; Zilkha E Br J Pharmacol; 1994 Dec; 113(4):1295-302. PubMed ID: 7534184 [TBL] [Abstract][Full Text] [Related]
19. Excitatory amino acid responses in relay neurons of the rat lateral geniculate nucleus. Harata N; Katayama J; Akaike N Neuroscience; 1999 Mar; 89(1):109-25. PubMed ID: 10051221 [TBL] [Abstract][Full Text] [Related]
20. L-glutamate-induced changes in intracellular calcium oscillation frequency through non-classical glutamate receptor binding in cultured rat myocardial cells. Winter CR; Baker RC Life Sci; 1995; 57(21):1925-34. PubMed ID: 7475942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]