BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9357772)

  • 1. Block by MOPS reveals a conformation change in the CFTR pore produced by ATP hydrolysis.
    Ishihara H; Welsh MJ
    Am J Physiol; 1997 Oct; 273(4):C1278-89. PubMed ID: 9357772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity.
    Carson MR; Travis SM; Welsh MJ
    J Biol Chem; 1995 Jan; 270(4):1711-7. PubMed ID: 7530246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator.
    Aleksandrov L; Mengos A; Chang X; Aleksandrov A; Riordan JR
    J Biol Chem; 2001 Apr; 276(16):12918-23. PubMed ID: 11279083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The two halves of CFTR form a dual-pore ion channel.
    Yue H; Devidas S; Guggino WB
    J Biol Chem; 2000 Apr; 275(14):10030-4. PubMed ID: 10744680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic tuning of the pre- and post-hydrolytic open states in CFTR.
    Zhang J; Hwang TC
    J Gen Physiol; 2017 Mar; 149(3):355-372. PubMed ID: 28242630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CFTR chloride channel: nucleotide interactions and temperature-dependent gating.
    Mathews CJ; Tabcharani JA; Hanrahan JW
    J Membr Biol; 1998 May; 163(1):55-66. PubMed ID: 9569250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme.
    Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC
    J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains.
    Csanády L; Chan KW; Seto-Young D; Kopsco DC; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Sep; 116(3):477-500. PubMed ID: 10962022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl
    Chen JH; Xu W; Sheppard DN
    J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conditional probability analysis of cystic fibrosis transmembrane conductance regulator gating indicates that ATP has multiple effects during the gating cycle.
    Hennager DJ; Ikuma M; Hoshi T; Welsh MJ
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3594-9. PubMed ID: 11248123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.
    Jih KY; Sohma Y; Hwang TC
    J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FLAG epitope positioned in an external loop preserves normal biophysical properties of CFTR.
    Schultz BD; Takahashi A; Liu C; Frizzell RA; Howard M
    Am J Physiol; 1997 Dec; 273(6):C2080-9. PubMed ID: 9435515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational states of CFTR associated with channel gating: the role ATP binding and hydrolysis.
    Gunderson KL; Kopito RR
    Cell; 1995 Jul; 82(2):231-9. PubMed ID: 7543023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP hydrolysis cycles and the gating of CFTR Cl- channels.
    Gadsby DC; Dousmanis AG; Nairn AC
    Acta Physiol Scand Suppl; 1998 Aug; 643():247-56. PubMed ID: 9789567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP hydrolysis-dependent asymmetry of the conformation of CFTR channel pore.
    Krasilnikov OV; Sabirov RZ; Okada Y
    J Physiol Sci; 2011 Jul; 61(4):267-78. PubMed ID: 21461971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis.
    Ikuma M; Welsh MJ
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8675-80. PubMed ID: 10880569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes in the catalytically inactive nucleotide-binding site of CFTR.
    Csanády L; Mihályi C; Szollosi A; Töröcsik B; Vergani P
    J Gen Physiol; 2013 Jul; 142(1):61-73. PubMed ID: 23752332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis.
    Hwang TC; Nagel G; Nairn AC; Gadsby DC
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4698-702. PubMed ID: 7515176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.