These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 9358152)
1. The ETS family member ERM contains an alpha-helical acidic activation domain that contacts TAFII60. Defossez PA; Baert JL; Monnot M; de Launoit Y Nucleic Acids Res; 1997 Nov; 25(22):4455-63. PubMed ID: 9358152 [TBL] [Abstract][Full Text] [Related]
2. The AD1 transactivation domain of E2A contains a highly conserved helix which is required for its activity in both Saccharomyces cerevisiae and mammalian cells. Massari ME; Jennings PA; Murre C Mol Cell Biol; 1996 Jan; 16(1):121-9. PubMed ID: 8524288 [TBL] [Abstract][Full Text] [Related]
3. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Thut CJ; Chen JL; Klemm R; Tjian R Science; 1995 Jan; 267(5194):100-4. PubMed ID: 7809597 [TBL] [Abstract][Full Text] [Related]
4. Two functionally distinct domains responsible for transactivation by the Ets family member ERM. Laget MP; Defossez PA; Albagli O; Baert JL; Dewitte F; Stehelin D; de Launoit Y Oncogene; 1996 Mar; 12(6):1325-36. PubMed ID: 8649835 [TBL] [Abstract][Full Text] [Related]
5. ERM transactivation is up-regulated by the repression of DNA binding after the PKA phosphorylation of a consensus site at the edge of the ETS domain. Baert JL; Beaudoin C; Coutte L; de Launoit Y J Biol Chem; 2002 Jan; 277(2):1002-12. PubMed ID: 11682477 [TBL] [Abstract][Full Text] [Related]
6. Structural and functional properties of the N transcriptional activation domain of thyroid transcription factor-1: similarities with the acidic activation domains. Tell G; Perrone L; Fabbro D; Pellizzari L; Pucillo C; De Felice M; Acquaviva R; Formisano S; Damante G Biochem J; 1998 Jan; 329 ( Pt 2)(Pt 2):395-403. PubMed ID: 9425125 [TBL] [Abstract][Full Text] [Related]
7. Exon 4-encoded acidic domain in the epithelium-restricted Ets factor, ESX, confers potent transactivating capacity and binds to TATA-binding protein (TBP). Chang CH; Scott GK; Baldwin MA; Benz CC Oncogene; 1999 Jun; 18(25):3682-95. PubMed ID: 10391676 [TBL] [Abstract][Full Text] [Related]
8. Identification of highly conserved amino-terminal segments of dTAFII230 and yTAFII145 that are functionally interchangeable for inhibiting TBP-DNA interactions in vitro and in promoting yeast cell growth in vivo. Kotani T; Miyake T; Tsukihashi Y; Hinnebusch AG; Nakatani Y; Kawaichi M; Kokubo T J Biol Chem; 1998 Nov; 273(48):32254-64. PubMed ID: 9822704 [TBL] [Abstract][Full Text] [Related]
9. Region of yeast TAF 130 required for TFIID to associate with promoters. Mencía M; Struhl K Mol Cell Biol; 2001 Feb; 21(4):1145-54. PubMed ID: 11158301 [TBL] [Abstract][Full Text] [Related]
10. Modular organization of the E2F1 activation domain and its interaction with general transcription factors TBP and TFIIH. Pearson A; Greenblatt J Oncogene; 1997 Nov; 15(22):2643-58. PubMed ID: 9400991 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the human and mouse ETV1/ER81 transcription factor genes: role of the two alternatively spliced isoforms in the human. Coutte L; Monté D; Imai K; Pouilly L; Dewitte F; Vidaud M; Adamski J; Baert JL; de Launoit Y Oncogene; 1999 Nov; 18(46):6278-86. PubMed ID: 10597226 [TBL] [Abstract][Full Text] [Related]
12. An inhibitor domain in Sp3 regulates its glutamine-rich activation domains. Dennig J; Beato M; Suske G EMBO J; 1996 Oct; 15(20):5659-67. PubMed ID: 8896459 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary conservation of human TATA-binding-polypeptide-associated factors TAFII31 and TAFII80 and interactions of TAFII80 with other TAFs and with general transcription factors. Hisatake K; Ohta T; Takada R; Guermah M; Horikoshi M; Nakatani Y; Roeder RG Proc Natl Acad Sci U S A; 1995 Aug; 92(18):8195-9. PubMed ID: 7667268 [TBL] [Abstract][Full Text] [Related]
14. Functional interaction of the c-Myc transactivation domain with the TATA binding protein: evidence for an induced fit model of transactivation domain folding. McEwan IJ; Dahlman-Wright K; Ford J; Wright AP Biochemistry; 1996 Jul; 35(29):9584-93. PubMed ID: 8755740 [TBL] [Abstract][Full Text] [Related]
15. Expression, purification, and structural prediction of the Ets transcription factor ERM. Mauen S; Huvent I; Raussens V; Demonte D; Baert JL; Tricot C; Ruysschaert JM; Van Lint C; Moguilevsky N; de Launoit Y Biochim Biophys Acta; 2006 Aug; 1760(8):1192-201. PubMed ID: 16730909 [TBL] [Abstract][Full Text] [Related]
16. ADR1-mediated transcriptional activation requires the presence of an intact TFIID complex. Komarnitsky PB; Klebanow ER; Weil PA; Denis CL Mol Cell Biol; 1998 Oct; 18(10):5861-7. PubMed ID: 9742103 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of Drosophila TAF110 into the yeast TFIID complex does not permit the Sp1 glutamine-rich activation domain to function in vivo. Keaveney M; Struhl K Genes Cells; 1999 Apr; 4(4):197-203. PubMed ID: 10336691 [TBL] [Abstract][Full Text] [Related]
18. Ras signaling and transcriptional synergy at a flexible Ets-1/Pit-1 composite DNA element is defined by the assembly of selective activation domains. Duval DL; Jean A; Gutierrez-Hartmann A J Biol Chem; 2003 Oct; 278(41):39684-96. PubMed ID: 12902343 [TBL] [Abstract][Full Text] [Related]
19. Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIF beta (RAP30) and incorporation into the TFIID complex. Dubrovskaya V; Lavigne AC; Davidson I; Acker J; Staub A; Tora L EMBO J; 1996 Jul; 15(14):3702-12. PubMed ID: 8758937 [TBL] [Abstract][Full Text] [Related]
20. Molecular cloning and characterization of human ERM, a new member of the Ets family closely related to mouse PEA3 and ER81 transcription factors. Monté D; Baert JL; Defossez PA; de Launoit Y; Stéhelin D Oncogene; 1994 May; 9(5):1397-406. PubMed ID: 8152800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]