These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9358172)

  • 1. Opening of the extraordinarily stable mini-hairpin d(GCGAAGC).
    Jollès B; Réfrégiers M; Laigle A
    Nucleic Acids Res; 1997 Nov; 25(22):4608-13. PubMed ID: 9358172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybridization kinetics of oligodeoxyribonucleotides with a d(GCGAAGC) hairpin at the 3'-end.
    Chraïbi Z; Réfrégiers M; Jollès B; Laigle A
    J Biomol Struct Dyn; 1999 Dec; 17(3):539-44. PubMed ID: 10636088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclease resistance of an extraordinarily thermostable mini-hairpin DNA fragment, d(GCGAAGC) and its application to in vitro protein synthesis.
    Yoshizawa S; Ueda T; Ishido Y; Miura K; Watanabe K; Hirao I
    Nucleic Acids Res; 1994 Jun; 22(12):2217-21. PubMed ID: 8036147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat.
    Hirao I; Kawai G; Yoshizawa S; Nishimura Y; Ishido Y; Watanabe K; Miura K
    Nucleic Acids Res; 1994 Feb; 22(4):576-82. PubMed ID: 8127706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed backbone antisense oligonucleotides: design, biochemical and biological properties of oligonucleotides containing 2'-5'-ribo- and 3'-5'-deoxyribonucleotide segments.
    Kandimalla ER; Manning A; Zhao Q; Shaw DR; Byrn RA; Sasisekharan V; Agrawal S
    Nucleic Acids Res; 1997 Jan; 25(2):370-8. PubMed ID: 9016567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer analysis of the degradation of an oligonucleotide protected by a very stable hairpin.
    Réfrégiers M; Laigle A; Jollès B; Chinsky L
    J Biomol Struct Dyn; 1996 Dec; 14(3):365-71. PubMed ID: 9016413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Best minimally modified antisense oligonucleotides according to cell nuclease activity.
    Samani TD; Jolles B; Laigle A
    Antisense Nucleic Acid Drug Dev; 2001 Jun; 11(3):129-36. PubMed ID: 11446588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progressive myoclonus epilepsy [EPM1] repeat d(CCCCGCCCCGCG)n forms folded hairpin structures at physiological pH.
    Pataskar SS; Dash D; Brahmachari SK
    J Biomol Struct Dyn; 2001 Oct; 19(2):293-305. PubMed ID: 11697734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural features and properties of an extraordinarily stable hairpin-turn structure of d(GCGAAGC).
    Hirao I; Kawai G; Yoshizawa S; Nishimura Y; Ishido Y; Watanabe K; Miura K
    Nucleic Acids Symp Ser; 1993; (29):205-6. PubMed ID: 8247770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of a stable intramolecular DNA triple helix formation.
    Völker J; Botes DP; Lindsey GG; Klump HH
    J Mol Biol; 1993 Apr; 230(4):1278-90. PubMed ID: 8487304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physico-chemical and biological properties of antisense phosphodiester oligonucleotides with various secondary structures.
    Maksimenko AV; Gottikh MB; Helin V; Shabarova ZA; Malvy C
    Nucleosides Nucleotides; 1999 Sep; 18(9):2071-91. PubMed ID: 10549152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligodeoxynucleotides having a loop consisting of 3'-deoxy-4'-C-(2-hydroxyethyl)thymidines form stable hairpins.
    Yamamoto Y; Shuto S; Tamura Y; Kodama T; Hoshika S; Ichikawa S; Ueno Y; Ohtsuka E; Komatsu Y; Matsuda A
    Biochemistry; 2004 Jul; 43(27):8690-9. PubMed ID: 15236577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA hairpin loops in solution. Correlation between primary structure, thermostability and reactivity with single-strand-specific nuclease from mung bean.
    Xodo LE; Manzini G; Quadrifoglio F; van der Marel G; van Boom J
    Nucleic Acids Res; 1991 Apr; 19(7):1505-11. PubMed ID: 2027758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of telomeric oligonucleotides: fidelity of repetitive nucleotide sequences.
    Shida T; Suda M; Sekiguchi J
    Nucleosides Nucleotides; 1998; 17(1-3):575-84. PubMed ID: 9708363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational analysis of hairpin oligodeoxyribonucleotides by a single-strand-specific nuclease.
    Baumann U; Frank R; Blöcker H
    Eur J Biochem; 1986 Dec; 161(2):409-13. PubMed ID: 3023095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation.
    Yu A; Dill J; Wirth SS; Huang G; Lee VH; Haworth IS; Mitas M
    Nucleic Acids Res; 1995 Jul; 23(14):2706-14. PubMed ID: 7651831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybridization of single-stranded DNA targets to immobilized complementary DNA probes: comparison of hairpin versus linear capture probes.
    Riccelli PV; Merante F; Leung KT; Bortolin S; Zastawny RL; Janeczko R; Benight AS
    Nucleic Acids Res; 2001 Feb; 29(4):996-1004. PubMed ID: 11160933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hairpin opening by single-strand-specific nucleases.
    Kabotyanski EB; Zhu C; Kallick DA; Roth DB
    Nucleic Acids Res; 1995 Oct; 23(19):3872-81. PubMed ID: 7479030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the structure of multi-stranded guanine-rich DNA complexes by Raman spectroscopy and enzymatic degradation.
    Poon K; Macgregor RB
    Biophys Chem; 1999 May; 79(1):11-23. PubMed ID: 10371018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.