BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 9358175)

  • 1. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family.
    Dalgaard JZ; Klar AJ; Moser MJ; Holley WR; Chatterjee A; Mian IS
    Nucleic Acids Res; 1997 Nov; 25(22):4626-38. PubMed ID: 9358175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of active-site residues in the Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease: Asp(122) and Asp(193) are crucial to the double-stranded DNA cleavage activity whereas Asp(218) is not.
    Singh P; Tripathi P; Muniyappa K
    Protein Sci; 2010 Jan; 19(1):111-23. PubMed ID: 19937653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homing endonuclease structure and function.
    Stoddard BL
    Q Rev Biophys; 2005 Feb; 38(1):49-95. PubMed ID: 16336743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid evolution of the DNA-binding site in LAGLIDADG homing endonucleases.
    Lucas P; Otis C; Mercier JP; Turmel M; Lemieux C
    Nucleic Acids Res; 2001 Feb; 29(4):960-9. PubMed ID: 11160929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characteristics of homing endonucleases.
    Guhan N; Muniyappa K
    Crit Rev Biochem Mol Biol; 2003; 38(3):199-248. PubMed ID: 12870715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular organization of inteins and C-terminal autocatalytic domains.
    Pietrokovski S
    Protein Sci; 1998 Jan; 7(1):64-71. PubMed ID: 9514260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical modeling, phylogenetic analysis and structure prediction of a protein splicing domain common to inteins and hedgehog proteins.
    Dalgaard JZ; Moser MJ; Hughey R; Mian IS
    J Comput Biol; 1997; 4(2):193-214. PubMed ID: 9228618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein footprinting approach to mapping DNA binding sites of two archaeal homing enzymes: evidence for a two-domain protein structure.
    Lykke-Andersen J; Garrett RA; Kjems J
    Nucleic Acids Res; 1996 Oct; 24(20):3982-9. PubMed ID: 8918801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI.
    Silva GH; Dalgaard JZ; Belfort M; Van Roey P
    J Mol Biol; 1999 Mar; 286(4):1123-36. PubMed ID: 10047486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary and biogeographical implications of degraded LAGLIDADG endonuclease functionality and group I intron occurrence in stony corals (Scleractinia) and mushroom corals (Corallimorpharia).
    Celis JS; Edgell DR; Stelbrink B; Wibberg D; Hauffe T; Blom J; Kalinowski J; Wilke T
    PLoS One; 2017; 12(3):e0173734. PubMed ID: 28278261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins.
    Pietrokovski S
    Protein Sci; 1994 Dec; 3(12):2340-50. PubMed ID: 7756989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution.
    Derbyshire V; Wood DW; Wu W; Dansereau JT; Dalgaard JZ; Belfort M
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11466-71. PubMed ID: 9326633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of intein homing endonuclease encoded in the DNA polymerase gene of Thermococcus marinus.
    Bae H; Kim KP; Song JM; Kim JH; Yang JS; Kwon ST
    FEMS Microbiol Lett; 2009 Aug; 297(2):180-8. PubMed ID: 19634205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A protein architecture guided screen for modification dependent restriction endonucleases.
    Lutz T; Flodman K; Copelas A; Czapinska H; Mabuchi M; Fomenkov A; He X; Bochtler M; Xu SY
    Nucleic Acids Res; 2019 Oct; 47(18):9761-9776. PubMed ID: 31504772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanisms of restriction and homing endonucleases.
    Galburt EA; Stoddard BL
    Biochemistry; 2002 Nov; 41(47):13851-60. PubMed ID: 12437341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a new subfamily of HNH nucleases and experimental characterization of a representative member, HphI restriction endonuclease.
    Cymerman IA; Obarska A; Skowronek KJ; Lubys A; Bujnicki JM
    Proteins; 2006 Dec; 65(4):867-76. PubMed ID: 17029241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes within genes: multiple LAGLIDADG homing endonucleases target the ribosomal protein S3 gene encoded within an rnl group I intron of Ophiostoma and related taxa.
    Sethuraman J; Majer A; Friedrich NC; Edgell DR; Hausner G
    Mol Biol Evol; 2009 Oct; 26(10):2299-315. PubMed ID: 19597163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nicking homing endonuclease I-BasI is encoded by a group I intron in the DNA polymerase gene of the Bacillus thuringiensis phage Bastille.
    Landthaler M; Shub DA
    Nucleic Acids Res; 2003 Jun; 31(12):3071-7. PubMed ID: 12799434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease, reveals a unique mode of DNA binding, helical distortion, and cleavage compared with a canonical LAGLIDADG homing endonuclease.
    Singh P; Tripathi P; Silva GH; Pingoud A; Muniyappa K
    J Biol Chem; 2009 Sep; 284(38):25912-28. PubMed ID: 19605345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinctive origins of group I introns found in the COXI genes of three gree algae.
    Watanabe KI; Ehara M; Inagaki Y; Ohama T
    Gene; 1998 Jun; 213(1-2):1-7. PubMed ID: 9714606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.