These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9358858)

  • 21. Molecular heterogeneity of chondroitin sulphate in the early developing chick wing bud.
    Fernandez-Teran M; Bayliss M; Archer CW
    Anat Embryol (Berl); 1993 Aug; 188(2):189-99. PubMed ID: 8214633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural domains in chondroitin sulfate identified by anti-chondroitin sulfate monoclonal antibodies. Immunosequencing of chondroitin sulfates.
    Sorrell JM; Carrino DA; Caplan AI
    Matrix; 1993 Sep; 13(5):351-61. PubMed ID: 7504164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chondroitin sulfate proteoglycan core proteins in the interphotoreceptor matrix: a comparative study using biochemical and immunohistochemical analysis.
    Hollyfield JG; Rayborn ME; Midura RJ; Shadrach KG; Acharya S
    Exp Eye Res; 1999 Sep; 69(3):311-22. PubMed ID: 10471339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactive cellular modulation of chondrogenic differentiation in vitro by subpopulations of chick embryonic calvarial cells.
    Wong M; Tuan RS
    Dev Biol; 1995 Jan; 167(1):130-47. PubMed ID: 7851637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyaluronan in limb morphogenesis.
    Li Y; Toole BP; Dealy CN; Kosher RA
    Dev Biol; 2007 May; 305(2):411-20. PubMed ID: 17362908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunoreactivity of the ets-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the developing avian heart.
    Macías D; Pérez-Pomares JM; García-Garrido L; Carmona R; Muñoz-Chápuli R
    Anat Embryol (Berl); 1998 Oct; 198(4):307-15. PubMed ID: 9764544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transforming growth factor-beta and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro.
    Roark EF; Greer K
    Dev Dyn; 1994 Jun; 200(2):103-16. PubMed ID: 7919498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation.
    DeLise AM; Stringa E; Woodward WA; Mello MA; Tuan RS
    Methods Mol Biol; 2000; 137():359-75. PubMed ID: 10948551
    [No Abstract]   [Full Text] [Related]  

  • 29. Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro.
    DeLise AM; Tuan RS
    J Cell Biochem; 2002; 87(3):342-59. PubMed ID: 12397616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of HNK1 epitope by the cardiomyocytes of the early embryonic chick: in situ and in vitro studies.
    Nakajima Y; Yoshimura K; Nomura M; Nakamura H
    Anat Rec; 2001 Jul; 263(3):326-33. PubMed ID: 11455542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different roles for fibronectin in the generation of fore and hind limb precartilage condensations.
    Downie SA; Newman SA
    Dev Biol; 1995 Dec; 172(2):519-30. PubMed ID: 8612968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural characterization of the epitopes of the monoclonal antibodies 473HD, CS-56, and MO-225 specific for chondroitin sulfate D-type using the oligosaccharide library.
    Ito Y; Hikino M; Yajima Y; Mikami T; Sirko S; von Holst A; Faissner A; Fukui S; Sugahara K
    Glycobiology; 2005 Jun; 15(6):593-603. PubMed ID: 15625183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cartilage cell differentiation: review.
    von der Mark K; Conrad G
    Clin Orthop Relat Res; 1979; (139):185-205. PubMed ID: 378496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identity of the core proteins of the large chondroitin sulphate proteoglycans synthesized by skeletal muscle and prechondrogenic mesenchyme.
    Carrino DA; Dennis JE; Drushel RF; Haynesworth SE; Caplan AI
    Biochem J; 1994 Feb; 298 ( Pt 1)(Pt 1):51-60. PubMed ID: 8129731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac muscle cell formation after development of the linear heart tube.
    Kruithof BP; van den Hoff MJ; Wessels A; Moorman AF
    Dev Dyn; 2003 May; 227(1):1-13. PubMed ID: 12701094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.
    Gamer LW; Cox KA; Small C; Rosen V
    Dev Biol; 2001 Jan; 229(2):407-20. PubMed ID: 11203700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression, function and regulation of Evi-1 during embryonic avian development.
    Celá P; Balková SM; Bryjová A; Horáková D; Míšek I; Richman JM; Buchtová M
    Gene Expr Patterns; 2013 Dec; 13(8):343-53. PubMed ID: 23831599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential expression of the islet-1 homeodomain protein in the limb bud of the chick embryo.
    Shiga T; Inoue K; Masuda T
    Anat Embryol (Berl); 2002 Jun; 205(3):223-8. PubMed ID: 12107492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chick cartilage fibronectin differs in structure from the fibronectin in limb mesenchyme.
    White DG; Hall JW; Brandli DW; Gehris AL; Bennett VD
    Exp Cell Res; 1996 May; 224(2):391-402. PubMed ID: 8612716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of oligodendrocyte precursor maintenance by chondroitin sulphate glycosaminoglycans.
    Karus M; Ulc A; Ehrlich M; Czopka T; Hennen E; Fischer J; Mizhorova M; Qamar N; Brüstle O; Faissner A
    Glia; 2016 Feb; 64(2):270-86. PubMed ID: 26454153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.