These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 9359432)
1. Glypican-3 is a binding protein on the HepG2 cell surface for tissue factor pathway inhibitor. Mast AE; Higuchi DA; Huang ZF; Warshawsky I; Schwartz AL; Broze GJ Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):577-83. PubMed ID: 9359432 [TBL] [Abstract][Full Text] [Related]
2. The low density lipoprotein receptor-related protein can function independently from heparan sulfate proteoglycans in tissue factor pathway inhibitor endocytosis. Warshawsky I; Herz J; Broze GJ; Schwartz AL J Biol Chem; 1996 Oct; 271(42):25873-9. PubMed ID: 8824219 [TBL] [Abstract][Full Text] [Related]
3. Effect of chlorate on the sulfation of lipoprotein lipase and heparan sulfate proteoglycans. Sulfation of heparan sulfate proteoglycans affects lipoprotein lipase degradation. Hoogewerf AJ; Cisar LA; Evans DC; Bensadoun A J Biol Chem; 1991 Sep; 266(25):16564-71. PubMed ID: 1885587 [TBL] [Abstract][Full Text] [Related]
4. Role of heparan sulfate proteoglycans in the uptake and degradation of tissue factor pathway inhibitor-coagulation factor Xa complexes. Ho G; Broze GJ; Schwartz AL J Biol Chem; 1997 Jul; 272(27):16838-44. PubMed ID: 9201990 [TBL] [Abstract][Full Text] [Related]
5. Binding of tissue factor pathway inhibitor to cultured endothelial cells-influence of glycosaminoglycans. Iversen N; Sandset PM; Abildgaard U; Torjesen PA Thromb Res; 1996 Nov; 84(4):267-78. PubMed ID: 8948051 [TBL] [Abstract][Full Text] [Related]
7. Receptor-mediated endocytosis of coagulation factor Xa requires cell surface-bound tissue factor pathway inhibitor. Ho G; Toomey JR; Broze GJ; Schwartz AL J Biol Chem; 1996 Apr; 271(16):9497-502. PubMed ID: 8621621 [TBL] [Abstract][Full Text] [Related]
8. Secretion and degradation of lipoprotein lipase in cultured adipocytes. Binding of lipoprotein lipase to membrane heparan sulfate proteoglycans is necessary for degradation. Cisar LA; Hoogewerf AJ; Cupp M; Rapport CA; Bensadoun A J Biol Chem; 1989 Jan; 264(3):1767-74. PubMed ID: 2521485 [TBL] [Abstract][Full Text] [Related]
9. Site-directed mutagenesis of a putative heparin binding domain of avian lipoprotein lipase. Berryman DE; Bensadoun A J Biol Chem; 1993 Feb; 268(5):3272-6. PubMed ID: 8429005 [TBL] [Abstract][Full Text] [Related]
10. Heparan sulphate proteoglycans are involved in the lipoprotein lipase-mediated enhancement of the cellular binding of very low density and low density lipoproteins. Mulder M; Lombardi P; Jansen H; van Berkel TJ; Frants RR; Havekes LM Biochem Biophys Res Commun; 1992 Jun; 185(2):582-7. PubMed ID: 1610351 [TBL] [Abstract][Full Text] [Related]
11. Metabolism of endothelial cell-bound lipoprotein lipase. Evidence for heparan sulfate proteoglycan-mediated internalization and recycling. Saxena U; Klein MG; Goldberg IJ J Biol Chem; 1990 Aug; 265(22):12880-6. PubMed ID: 2142941 [TBL] [Abstract][Full Text] [Related]
12. ZG16p, an animal homolog of β-prism fold plant lectins, interacts with heparan sulfate proteoglycans in pancreatic zymogen granules. Kumazawa-Inoue K; Mimura T; Hosokawa-Tamiya S; Nakano Y; Dohmae N; Kinoshita-Toyoda A; Toyoda H; Kojima-Aikawa K Glycobiology; 2012 Feb; 22(2):258-66. PubMed ID: 21948871 [TBL] [Abstract][Full Text] [Related]
13. The C-terminal domain V of perlecan promotes beta1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Brown JC; Sasaki T; Göhring W; Yamada Y; Timpl R Eur J Biochem; 1997 Nov; 250(1):39-46. PubMed ID: 9431988 [TBL] [Abstract][Full Text] [Related]
14. Proteoglycans in macrophages: characterization and possible role in the cellular uptake of lipoproteins. Halvorsen B; Aas UK; Kulseth MA; Drevon CA; Christiansen EN; Kolset SO Biochem J; 1998 May; 331 ( Pt 3)(Pt 3):743-52. PubMed ID: 9560300 [TBL] [Abstract][Full Text] [Related]
15. K-glypican: a novel GPI-anchored heparan sulfate proteoglycan that is highly expressed in developing brain and kidney. Watanabe K; Yamada H; Yamaguchi Y J Cell Biol; 1995 Sep; 130(5):1207-18. PubMed ID: 7657705 [TBL] [Abstract][Full Text] [Related]
16. Perlecan is responsible for thrombospondin 1 binding on the cell surface of cultured porcine endothelial cells. Vischer P; Feitsma K; Schön P; Völker W Eur J Cell Biol; 1997 Aug; 73(4):332-43. PubMed ID: 9270876 [TBL] [Abstract][Full Text] [Related]
17. Neuronal expression of glypican, a cell-surface glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan, in the adult rat nervous system. Litwack ED; Stipp CS; Kumbasar A; Lander AD J Neurosci; 1994 Jun; 14(6):3713-24. PubMed ID: 8207484 [TBL] [Abstract][Full Text] [Related]
18. Recycling of a glycosylphosphatidylinositol-anchored heparan sulphate proteoglycan (glypican) in skin fibroblasts. Fransson LA; Edgren G; Havsmark B; Schmidtchen A Glycobiology; 1995 Jun; 5(4):407-15. PubMed ID: 7579795 [TBL] [Abstract][Full Text] [Related]
19. Binding and degradation of thrombospondin-1 mediated through heparan sulphate proteoglycans and low-density-lipoprotein receptor-related protein: localization of the functional activity to the trimeric N-terminal heparin-binding region of thrombospondin-1. Chen H; Sottile J; Strickland DK; Mosher DF Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):959-63. PubMed ID: 8836144 [TBL] [Abstract][Full Text] [Related]
20. Is the sensitivity of cells for FGF-1 and FGF-2 regulated by cell surface heparan sulfate proteoglycans? Zhou FY; Owens RT; Hermonen J; Jalkanen M; Höök M Eur J Cell Biol; 1997 Jun; 73(2):166-74. PubMed ID: 9208230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]