BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9359632)

  • 1. The role of cytoskeletal elements in the two-phase denucleation process of mammalian erythroblasts in vitro observed by laser confocal scanning microscope.
    Xue SP; Zhang SF; Du Q; Sun H; Xin J; Liu SQ; Ma J
    Cell Mol Biol (Noisy-le-grand); 1997 Sep; 43(6):851-60. PubMed ID: 9359632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts.
    Koury ST; Koury MJ; Bondurant MC
    J Cell Biol; 1989 Dec; 109(6 Pt 1):3005-13. PubMed ID: 2574178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological changes in erythroblasts during erythropoietin-induced terminal differentiation in vitro.
    Koury ST; Koury MJ; Bondurant MC
    Exp Hematol; 1988 Oct; 16(9):758-63. PubMed ID: 3169158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splenic erythroblasts in anemia-inducing Friend disease: a source of cells for studies of erythropoietin-mediated differentiation.
    Koury MJ; Sawyer ST; Bondurant MC
    J Cell Physiol; 1984 Dec; 121(3):526-32. PubMed ID: 6501430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythroid differentiation denucleation factors (EDDFs) function as intrinsic, post-erythropoietin regulators for mammalian erythroid terminal differentiation.
    Xue SP; Zhang SF; Ma W; Zhang Z; Liu P; Zhao Q; Han D
    Cell Prolif; 2006 Feb; 39(1):61-74. PubMed ID: 16426423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Erythroid differentiation denucleation factor: a family of erythroid regulators for mammalian erythroid terminal differentiation/tumor suppression and the cloning of their related genes].
    Xue S; Liu Y; Zhang S; Ma W; Wang X; Fei R; Du Q; Zhang Z; Zhang J; Chen K; Zhou J; Ma J; Han D
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2000 Aug; 22(4):371-5. PubMed ID: 12903454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Subtractive cDNA cloning and analysis of murine erythroid terminal differentiation related factor].
    Liu S; Zhang Z; Ma J; Zhang S; Xue S
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1999 Apr; 21(2):94-8. PubMed ID: 12569662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Terminal differentiation of human peripheral blood CD34 positive cells to reticulocytes in vitro and effects of cytoskeletal modifiers on enucleation].
    Fukada Y
    Hokkaido Igaku Zasshi; 1998 Nov; 73(6):543-56. PubMed ID: 10036613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2.
    Ji P; Jayapal SR; Lodish HF
    Nat Cell Biol; 2008 Mar; 10(3):314-21. PubMed ID: 18264091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological study of fibroblasts treated with cytochalasin D and colchicine using a confocal laser scanning microscopy.
    Ujihara Y; Miyazaki H; Wada S
    J Physiol Sci; 2008 Dec; 58(7):499-506. PubMed ID: 18928641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies.
    Broers JL; Peeters EA; Kuijpers HJ; Endert J; Bouten CV; Oomens CW; Baaijens FP; Ramaekers FC
    Hum Mol Genet; 2004 Nov; 13(21):2567-80. PubMed ID: 15367494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation of a subpopulation of vimentin filaments in cultured human skin fibroblasts derived from patients with giant axonal neuropathy.
    Bousquet O; Basseville M; Vila-Porcile E; Billette de Villemeur T; Hauw JJ; Landrieu P; Portier MM
    Cell Motil Cytoskeleton; 1996; 33(2):115-29. PubMed ID: 8635201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The association of tau-like proteins with vimentin filaments in cultured cells.
    Capote C; Maccioni RB
    Exp Cell Res; 1998 Mar; 239(2):202-13. PubMed ID: 9521838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifications of vimentin filament architecture and vimentin-nuclear interactions by cholesterol oxides in 73/73 endothelial cells.
    Palladini G; Finardi G; Bellomo G
    Exp Cell Res; 1996 Feb; 223(1):83-90. PubMed ID: 8635498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexistence of tubulin, vimentin and F-actin in Leydig cells in vitro detected by double immunofluorescence studies.
    BiliƄska B
    Cytobios; 1993; 74(296):15-21. PubMed ID: 8330484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the cell phenotype characteristics of hybrid cells crossed between rat nucleated erythroblasts and mouse plasmocytoma (SP2/O) cell line.
    Zhang QY; Xue SP
    Sci China B; 1990 May; 33(5):572-83. PubMed ID: 2390164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular organization and in vivo function of the cytoskeleton of amphibian erythrocytes.
    Lee KG; Kerr LM; Cohen WD
    Cell Motil Cytoskeleton; 2007 Aug; 64(8):621-8. PubMed ID: 17508361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoskeleton and vesicle mobility in astrocytes.
    Potokar M; Kreft M; Li L; Daniel Andersson J; Pangrsic T; Chowdhury HH; Pekny M; Zorec R
    Traffic; 2007 Jan; 8(1):12-20. PubMed ID: 17229312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of actin, myosin, and spectrin during enucleation in erythroid cells of hamster embryo.
    Takano-Ohmuro H; Mukaida M; Morioka K
    Cell Motil Cytoskeleton; 1996; 34(2):95-107. PubMed ID: 8769722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron microscopy of intermediate filaments: teaming up with atomic force and confocal laser scanning microscopy.
    Kreplak L; Richter K; Aebi U; Herrmann H
    Methods Cell Biol; 2008; 88():273-97. PubMed ID: 18617039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.