BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 9359858)

  • 1. Mutagenesis of residue 157 in the active site of human glyoxalase I.
    Ridderström M; Cameron AD; Jones TA; Mannervik B
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):231-5. PubMed ID: 9359858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of an active-site Zn2+ ligand in the catalytic mechanism of human glyoxalase I.
    Ridderström M; Cameron AD; Jones TA; Mannervik B
    J Biol Chem; 1998 Aug; 273(34):21623-8. PubMed ID: 9705294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simplified method for the purification of human red blood cell glyoxalase. I. Characteristics, immunoblotting, and inhibitor studies.
    Allen RE; Lo TW; Thornalley PJ
    J Protein Chem; 1993 Apr; 12(2):111-9. PubMed ID: 8489699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypanothione-dependent glyoxalase I in Trypanosoma cruzi.
    Greig N; Wyllie S; Vickers TJ; Fairlamb AH
    Biochem J; 2006 Dec; 400(2):217-23. PubMed ID: 16958620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies.
    Clugston SL; Yajima R; Honek JF
    Biochem J; 2004 Jan; 377(Pt 2):309-16. PubMed ID: 14556652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phylogenetically conserved histidines of Escherichia coli porphobilinogen synthase are not required for catalysis.
    Mitchell LW; Volin M; Jaffe EK
    J Biol Chem; 1995 Oct; 270(41):24054-9. PubMed ID: 7592604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast glyoxalase I is a monomeric enzyme with two active sites.
    Frickel EM; Jemth P; Widersten M; Mannervik B
    J Biol Chem; 2001 Jan; 276(3):1845-9. PubMed ID: 11050082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of directed mutagenesis on conserved arginine residues in a human Class Alpha glutathione transferase.
    Stenberg G; Board PG; Carlberg I; Mannervik B
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):549-55. PubMed ID: 2006917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of mammalian glyoxalase I (lactoylglutathione lyase) by N-acylated S-blocked glutathione derivatives as a probe for the role of the N-site of glutathione in glyoxalase I mechanism.
    Al-Timari A; Douglas KT
    Biochim Biophys Acta; 1986 Mar; 870(1):160-8. PubMed ID: 3947646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation.
    Thornalley PJ
    Biochem Soc Trans; 2003 Dec; 31(Pt 6):1343-8. PubMed ID: 14641060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caution: the glycylmethyl and glycylethyl esters of glutathione are substrates for glyoxalase I.
    Hamilton DS; Creighton DJ
    Biochim Biophys Acta; 1992 Sep; 1159(2):203-8. PubMed ID: 1390924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of glyoxalase I purified from yeast (Saccharomyces cerevisiae) with the enzyme from mammalian sources.
    Marmstål E; Aronsson AC; Mannervik B
    Biochem J; 1979 Oct; 183(1):23-30. PubMed ID: 393249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized heterologous expression of the human zinc enzyme glyoxalase I.
    Ridderström M; Mannervik B
    Biochem J; 1996 Mar; 314 ( Pt 2)(Pt 2):463-7. PubMed ID: 8670058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of glyoxalase I by the enediol mimic S-(N-hydroxy-N-methylcarbamoyl)glutathione. The possible basis of a tumor-selective anticancer strategy.
    Hamilton DS; Creighton DJ
    J Biol Chem; 1992 Dec; 267(35):24933-6. PubMed ID: 1459997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme.
    Ariza A; Vickers TJ; Greig N; Armour KA; Dixon MJ; Eggleston IM; Fairlamb AH; Bond CS
    Mol Microbiol; 2006 Feb; 59(4):1239-48. PubMed ID: 16430697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural role of histidine 15 in human glutathione transferase M1-1, an amino acid residue conserved in class Mu enzymes.
    Widersten M; Mannervik B
    Protein Eng; 1992 Sep; 5(6):551-7. PubMed ID: 1438166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the reactive cysteine residue (Cys227) in human carbonyl reductase.
    Tinguely JN; Wermuth B
    Eur J Biochem; 1999 Feb; 260(1):9-14. PubMed ID: 10091578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major.
    Vickers TJ; Greig N; Fairlamb AH
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13186-91. PubMed ID: 15329410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.