These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9359904)

  • 1. Intracellular alkalinization causes Mg2+ release from intracellular binding sites in leech Retzius neurones.
    Günzel D; Durry S; Schlue WR
    Pflugers Arch; 1997 Dec; 435(1):65-73. PubMed ID: 9359904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH recovery from intracellular alkalinization in Retzius neurones of the leech central nervous system.
    Frey G; Schlue WR
    J Physiol; 1993 Mar; 462():627-43. PubMed ID: 8331595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-magnesium antiport in Retzius neurones of the leech Hirudo medicinalis.
    Günzel D; Schlue WR
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):595-608. PubMed ID: 8815196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of AMPA/kainate receptors but not acetylcholine receptors causes Mg2+ influx into Retzius neurones of the leech Hirudo medicinalis.
    Muller A; Gunzel D; Schlue WR
    J Gen Physiol; 2003 Dec; 122(6):727-39. PubMed ID: 14638932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech.
    Deitmer JW; Schlue WR
    J Physiol; 1987 Jul; 388():261-83. PubMed ID: 2821243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inwardly directed electrogenic sodium-bicarbonate co-transport in leech glial cells.
    Deitmer JW; Schlue WR
    J Physiol; 1989 Apr; 411():179-94. PubMed ID: 2559193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system.
    Deitmer JW; Szatkowski M
    J Physiol; 1990 Feb; 421():617-31. PubMed ID: 2112195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system.
    Deitmer JW
    J Gen Physiol; 1991 Sep; 98(3):637-55. PubMed ID: 1761972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-bicarbonate cotransport current in identified leech glial cells.
    Munsch T; Deitmer JW
    J Physiol; 1994 Jan; 474(1):43-53. PubMed ID: 8014897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+-dependent regulation of the free Mg2+ concentration in neuropile glial cells and P neurones of the leech Hirudo medicinalis.
    Hintz K; Günzel D; Schlue WR
    Pflugers Arch; 1999 Feb; 437(3):354-62. PubMed ID: 9914391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of intracellular pH in identified glial cells and neurones of the leech central nervous system.
    Schlue WR; Deitmer JW
    Can J Physiol Pharmacol; 1987 May; 65(5):978-85. PubMed ID: 3621057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of intracellular sodium in cultured rat hippocampal neurones.
    Rose CR; Ransom BR
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):573-87. PubMed ID: 9130155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mg2+-malate co-transport, a mechanism for Na+-independent Mg2+ transport in neurons of the leech Hirudo medicinalis.
    Günzel D; Hintz K; Durry S; Schlue WR
    J Neurophysiol; 2005 Jul; 94(1):441-53. PubMed ID: 15788520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual mechanism for intracellular pH regulation by leech neurones.
    Schlue WR; Thomas RC
    J Physiol; 1985 Jul; 364():327-38. PubMed ID: 4032303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid/base transport across the leech giant glial cell membrane at low external bicarbonate concentration.
    Deitmer JW; Schneider HP
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):459-69. PubMed ID: 9763635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular acidosis of identified leech neurones produced by substitution of external sodium.
    Deitmer JW; Schlue WR
    Brain Res; 1988 Oct; 462(2):233-41. PubMed ID: 3191385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of pHi regulation by locust neurones in isolated ganglia: a microelectrode study.
    Schwiening CJ; Thomas RC
    J Physiol; 1992 Feb; 447():693-709. PubMed ID: 1317439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bicarbonate-dependent changes of intracellular sodium and pH in identified leech glial cells.
    Deitmer JW
    Pflugers Arch; 1992 Apr; 420(5-6):584-9. PubMed ID: 1614834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular pH in the smooth muscle of guinea-pig ureter: Na+ dependence.
    Aickin CC
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):301-16. PubMed ID: 7799229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent clamp of intracellular pH of identified leech glial cells.
    Deitmer JW; Schneider HP
    J Physiol; 1995 May; 485 ( Pt 1)(Pt 1):157-66. PubMed ID: 7658370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.