BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9360115)

  • 1. Magnetic suspension controls for a new continuous flow ventricular assist device.
    Hilton EF; Allaire PE; Baloh MJ; Maslen E; Bearnson G; Khanwilkar P; Olsen D
    ASAIO J; 1997; 43(5):M598-603. PubMed ID: 9360115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Test controller design, implementation, and performance for a magnetic suspension continuous flow ventricular assist device.
    Hilton EF; Allaire PE; Wei N; Baloh MJ; Bearnson G; Olsen DB; Khanwilkar P
    Artif Organs; 1999 Aug; 23(8):785-91. PubMed ID: 10463508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic characteristics of a magnetically levitated impeller in a centrifugal blood pump.
    Asama J; Shinshi T; Hoshi H; Takatani S; Shimokohbe A
    Artif Organs; 2007 Apr; 31(4):301-11. PubMed ID: 17437499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a continuous flow ventricular assist device: magnetic bearing design, construction, and testing.
    Allaire P; Hilton E; Baloh M; Maslen E; Bearnson G; Noh D; Khanwilkar P; Olsen D
    Artif Organs; 1998 Jun; 22(6):475-80. PubMed ID: 9650668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a prototype magnetically suspended rotor ventricular assist device.
    Bearnson GB; Maslen EH; Olsen DB; Allaire PE; Khanwilkar PS; Long JW; Kim HC
    ASAIO J; 1996; 42(4):275-81. PubMed ID: 8828784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compact highly efficient and low hemolytic centrifugal blood pump with a magnetically levitated impeller.
    Asama J; Shinshi T; Hoshi H; Takatani S; Shimokohbe A
    Artif Organs; 2006 Mar; 30(3):160-7. PubMed ID: 16480390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.
    Throckmorton AL; Untaroiu A; Lim DS; Wood HG; Allaire PE
    Artif Organs; 2007 May; 31(5):359-68. PubMed ID: 17470205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impeller behavior and displacement of the VentrAssist implantable rotary blood pump.
    Chung MK; Zhang N; Tansley GD; Woodard JC
    Artif Organs; 2004 Mar; 28(3):287-97. PubMed ID: 15046628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of left ventricle function from a magnetically levitated impeller behavior.
    Hoshi H; Asama J; Hara C; Hijikata W; Shinshi T; Shimokohbe A; Takatani S
    Artif Organs; 2006 May; 30(5):377-83. PubMed ID: 16683956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.
    Hijikata W; Sobajima H; Shinshi T; Nagamine Y; Wada S; Takatani S; Shimokohbe A
    Artif Organs; 2010 Aug; 34(8):669-77. PubMed ID: 20528854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of an axial flow heart pump with active and passive magnetic bearings.
    Glauser M; Jiang W; Li G; Lin Z; Allaire PE; Olson D
    Artif Organs; 2006 May; 30(5):400-3. PubMed ID: 16683959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid dynamic characteristics of monopivot magnetic suspension blood pumps.
    Yamane T; Nishida M; Asztalos B; Tsutsui T; Jikuya T
    ASAIO J; 1997; 43(5):M635-8. PubMed ID: 9360122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project).
    Nosé Y; Furukawa K
    Artif Organs; 2004 Oct; 28(10):953-8. PubMed ID: 15385004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device.
    Khanwilkar P; Olsen D; Bearnson G; Allaire P; Maslen E; Flack R; Long J
    Artif Organs; 1996 Jun; 20(6):597-604. PubMed ID: 8817963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop.
    Timms D; Hayne M; Tan A; Pearcy M
    Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.
    Su B; Chua LP; Lim TM; Zhou T
    Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design concepts and principle of operation of the HeartWare ventricular assist system.
    Larose JA; Tamez D; Ashenuga M; Reyes C
    ASAIO J; 2010; 56(4):285-9. PubMed ID: 20559135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump.
    Boehning F; Timms DL; Amaral F; Oliveira L; Graefe R; Hsu PL; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Aug; 35(8):818-25. PubMed ID: 21843297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A new approach for improving antithrombogenicity in centrifugal pump].
    Qian K; Zeng P; Ru W; Yuan H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):534-6. PubMed ID: 14565033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Improved design of permanent maglev impeller assist heart].
    Qian K; Zeng P; Ru W; Yuan H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Dec; 19(4):593-5. PubMed ID: 12561356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.