These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 9360131)

  • 41. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.
    Yamamoto T; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2008; 11(4):238-40. PubMed ID: 19184291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An implantable micropower command receiver for telemetry battery power switching.
    Sweeney JD; Leung A; Ko WH
    Biotelem Patient Monit; 1981; 8(3):173-9. PubMed ID: 7295932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functions for detecting malposition of transcutaneous energy transmission coils.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Mochizuki S; Ishimaru M; Takiura K; Baba A; Toyama T; Imachi K
    ASAIO J; 2003; 49(4):469-74. PubMed ID: 12918593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ovalis TAH: development and in vitro testing of a new electromechanical energy converter for a total artificial heart.
    Sauer IM; Frank J; Spiegelberg A; Bücherl ES
    ASAIO J; 2000; 46(6):744-8. PubMed ID: 11110274
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An implantable ventricular assist system: chronic in vivo performance.
    Igo SR; Fuqua JM; McGee MG; Creager GJ; Pool GE; Krudewig TW; Frazier GH
    Trans Am Soc Artif Intern Organs; 1984; 30():81-5. PubMed ID: 6533974
    [No Abstract]   [Full Text] [Related]  

  • 46. Engineering metal-impurity nanodefects for low-cost solar cells.
    Buonassisi T; Istratov AA; Marcus MA; Lai B; Cai Z; Heald SM; Weber ER
    Nat Mater; 2005 Sep; 4(9):676-9. PubMed ID: 16100514
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An isolation power supply by phototransmission.
    Takahashi K; Izawa K; Morimoto T
    Front Med Biol Eng; 1992; 4(3):201-8. PubMed ID: 1419919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous flow total artificial heart: modeling and feedback control in a mock circulatory system.
    Khalil HA; Kerr DT; Franchek MA; Metcalfe RW; Benkowski RJ; Cohn WE; Tuzun E; Radovancevic B; Frazier OH; Kadipasaoglu KA
    ASAIO J; 2008; 54(3):249-55. PubMed ID: 18496274
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power.
    Lewandowski BE; Kilgore KL; Gustafson KJ
    Ann Biomed Eng; 2007 Apr; 35(4):631-41. PubMed ID: 17295066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A completely implantable total artificial heart system.
    Snyder A; Rosenberg G; Weiss W; Pierce W; Pae W; Marlotte J; Nazarian R; Ford S
    ASAIO Trans; 1991; 37(3):M237-8. PubMed ID: 1751126
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Power generation from four skeletal muscle configurations. Design implications for a muscle powered cardiac assist device.
    Badhwar V; Badhwar RK; Oh JH; Chiu RC
    ASAIO J; 1997; 43(5):M651-7. PubMed ID: 9360126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. How can the total artificial heart (TAH) patient be mobile and enjoy his life with an air driven system?
    Atsumi K; Fujimasa I; Imachi K; Nakajima M
    Trans Am Soc Artif Intern Organs; 1984; 30():86-91. PubMed ID: 6533975
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent progress on transcutaneous energy transfer for total artificial heart systems.
    Puers R; Vandevoorde G
    Artif Organs; 2001 May; 25(5):400-5. PubMed ID: 11403672
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions.
    Muhammad FF; Yahya MY; Hameed SS; Aziz F; Sulaiman K; Rasheed MA; Ahmad Z
    PLoS One; 2017; 12(8):e0182925. PubMed ID: 28793325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells.
    Park DW; Park KH; Lee JW; Hwang KJ; Choi YK
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3722-6. PubMed ID: 18047045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-performance flexible energy storage and harvesting system for wearable electronics.
    Ostfeld AE; Gaikwad AM; Khan Y; Arias AC
    Sci Rep; 2016 May; 6():26122. PubMed ID: 27184194
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Selection of power force for the electrocardiostimulating apparatus and the study of the characteristics of the battery "Krona VTs"].
    Dubrovskiĭ IA; Ostashkin SP
    Med Tekh; 1976; (2):23-6. PubMed ID: 1025424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Totally implantable completely electric artificial heart: "AbioCor"].
    Pavie A; Léger P; Leprince P; Gandjbakhch I
    Arch Mal Coeur Vaiss; 2003 Oct; 96(10):934-8. PubMed ID: 14653052
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The E4T electric powered total artificial heart (TAH).
    Smith WA; Hete BF; Kiraly RJ; Fujimoto LK; Jacobs GB; Ishikawa M; Butler K; Nosé Y
    Artif Organs; 1988 Oct; 12(5):402-9. PubMed ID: 3190490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.