These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. Petrosino JF; Palzkill T J Bacteriol; 1996 Apr; 178(7):1821-8. PubMed ID: 8606154 [TBL] [Abstract][Full Text] [Related]
3. Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime. Cantu C; Huang W; Palzkill T J Biol Chem; 1996 Sep; 271(37):22538-45. PubMed ID: 8798421 [TBL] [Abstract][Full Text] [Related]
4. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase. Palzkill T; Botstein D J Bacteriol; 1992 Aug; 174(16):5237-43. PubMed ID: 1644749 [TBL] [Abstract][Full Text] [Related]
5. A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. Stojanoski V; Chow DC; Hu L; Sankaran B; Gilbert HF; Prasad BV; Palzkill T J Biol Chem; 2015 Apr; 290(16):10382-94. PubMed ID: 25713062 [TBL] [Abstract][Full Text] [Related]
6. Selection strategy for site-directed mutagenesis based on altered beta-lactamase specificity. Andrews CA; Lesley SA Biotechniques; 1998 Jun; 24(6):972-4, 976, 978 passim. PubMed ID: 9631188 [TBL] [Abstract][Full Text] [Related]
7. Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase. Zhang Z; Yu Y; Musser JM; Palzkill T J Biol Chem; 2001 Dec; 276(49):46568-74. PubMed ID: 11591698 [TBL] [Abstract][Full Text] [Related]
8. The role of residue 238 of TEM-1 beta-lactamase in the hydrolysis of extended-spectrum antibiotics. Cantu C; Palzkill T J Biol Chem; 1998 Oct; 273(41):26603-9. PubMed ID: 9756899 [TBL] [Abstract][Full Text] [Related]
9. Increased structural flexibility at the active site of a fluorophore-conjugated beta-lactamase distinctively impacts its binding toward diverse cephalosporin antibiotics. Wong WT; Chan KC; So PK; Yap HK; Chung WH; Leung YC; Wong KY; Zhao Y J Biol Chem; 2011 Sep; 286(36):31771-80. PubMed ID: 21705325 [TBL] [Abstract][Full Text] [Related]
10. Role of Ser-238 and Lys-240 in the hydrolysis of third-generation cephalosporins by SHV-type beta-lactamases probed by site-directed mutagenesis and three-dimensional modeling. Huletsky A; Knox JR; Levesque RC J Biol Chem; 1993 Feb; 268(5):3690-7. PubMed ID: 8429044 [TBL] [Abstract][Full Text] [Related]
11. Substitution of lysine at position 104 or 240 of TEM-1pTZ18R beta-lactamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam. Sowek JA; Singer SB; Ohringer S; Malley MF; Dougherty TJ; Gougoutas JZ; Bush K Biochemistry; 1991 Apr; 30(13):3179-88. PubMed ID: 1901218 [TBL] [Abstract][Full Text] [Related]
12. Mutagenesis and structural analysis reveal the CTX-M β-lactamase active site is optimized for cephalosporin catalysis and drug resistance. Lu S; Montoya M; Hu L; Neetu N; Sankaran B; Prasad BVV; Palzkill T J Biol Chem; 2023 May; 299(5):104630. PubMed ID: 36963495 [TBL] [Abstract][Full Text] [Related]
13. Fluorescein-labeled beta-lactamase mutant for high-throughput screening of bacterial beta-lactamases against beta-lactam antibiotics. Chan PH; Chan KC; Liu HB; Chung WH; Leung YC; Wong KY Anal Chem; 2005 Aug; 77(16):5268-76. PubMed ID: 16097768 [TBL] [Abstract][Full Text] [Related]
14. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
15. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis. Brown NG; Shanker S; Prasad BV; Palzkill T J Biol Chem; 2009 Nov; 284(48):33703-12. PubMed ID: 19812041 [TBL] [Abstract][Full Text] [Related]
16. Hydrolysis of third-generation cephalosporins by class C beta-lactamases. Structures of a transition state analog of cefotoxamine in wild-type and extended spectrum enzymes. Nukaga M; Kumar S; Nukaga K; Pratt RF; Knox JR J Biol Chem; 2004 Mar; 279(10):9344-52. PubMed ID: 14660590 [TBL] [Abstract][Full Text] [Related]
17. Multiple substitutions at position 104 of beta-lactamase TEM-1: assessing the role of this residue in substrate specificity. Petit A; Maveyraud L; Lenfant F; Samama JP; Labia R; Masson JM Biochem J; 1995 Jan; 305 ( Pt 1)(Pt 1):33-40. PubMed ID: 7826350 [TBL] [Abstract][Full Text] [Related]
18. Mutagenesis of amino acid residues in the SHV-1 beta-lactamase: the premier role of Gly238Ser in penicillin and cephalosporin resistance. Hujer AM; Hujer KM; Bonomo RA Biochim Biophys Acta; 2001 May; 1547(1):37-50. PubMed ID: 11343789 [TBL] [Abstract][Full Text] [Related]
19. An engineered disulfide bond between residues 69 and 238 in extended-spectrum beta-lactamase Toho-1 reduces its activity toward third-generation cephalosporins. Shimizu-Ibuka A; Matsuzawa H; Sakai H Biochemistry; 2004 Dec; 43(50):15737-45. PubMed ID: 15595829 [TBL] [Abstract][Full Text] [Related]