BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9361013)

  • 21. Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I.
    Faridmoayer A; Scaman CH
    Glycobiology; 2005 Dec; 15(12):1341-8. PubMed ID: 16014748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Demonstration of protein tyrosine phosphatase activity in the second of two homologous domains of CD45.
    Tan X; Stover DR; Walsh KA
    J Biol Chem; 1993 Apr; 268(10):6835-8. PubMed ID: 8463207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Domain interactions in protein tyrosine kinase Csk.
    Sondhi D; Cole PA
    Biochemistry; 1999 Aug; 38(34):11147-55. PubMed ID: 10460171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanistic studies on full length and the catalytic domain of the tandem SH2 domain-containing protein tyrosine phosphatase: analysis of phosphoenzyme levels and Vmax stimulatory effects of glycerol and of a phosphotyrosyl peptide ligand.
    Wang J; Walsh CT
    Biochemistry; 1997 Mar; 36(10):2993-9. PubMed ID: 9062130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular determinants of substrate recognition in hematopoietic protein-tyrosine phosphatase.
    Huang Z; Zhou B; Zhang ZY
    J Biol Chem; 2004 Dec; 279(50):52150-9. PubMed ID: 15466470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The properties of the protein tyrosine phosphatase PTPMEG.
    Gu M; Majerus PW
    J Biol Chem; 1996 Nov; 271(44):27751-9. PubMed ID: 8910369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the receptor protein tyrosine phosphatase gene product PTP gamma: binding and activation by triphosphorylated nucleosides.
    Sorio C; Mendrola J; Lou Z; LaForgia S; Croce CM; Huebner K
    Cancer Res; 1995 Nov; 55(21):4855-64. PubMed ID: 7585520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity.
    Muda M; Theodosiou A; Gillieron C; Smith A; Chabert C; Camps M; Boschert U; Rodrigues N; Davies K; Ashworth A; Arkinstall S
    J Biol Chem; 1998 Apr; 273(15):9323-9. PubMed ID: 9535927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1.
    Slack DN; Seternes OM; Gabrielsen M; Keyse SM
    J Biol Chem; 2001 May; 276(19):16491-500. PubMed ID: 11278799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterization of the human protein tyrosine phosphatase, PTP mu, from a baculovirus expression system.
    Brady-Kalnay SM; Tonks NK
    Mol Cell Biochem; 1993 Nov; 127-128():131-41. PubMed ID: 7935345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissecting the catalytic mechanism of protein-tyrosine phosphatases.
    Zhang ZY; Wang Y; Dixon JE
    Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1624-7. PubMed ID: 8127855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular cloning and characterization of a tyrosine phosphatase from Monosiga brevicollis.
    Zhao BF; Zhao ZJ
    Biochem Biophys Res Commun; 2014 Oct; 453(4):761-6. PubMed ID: 25445586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic activation of the plant MAPK phosphatase NtMKP1 by its physiological substrate salicylic acid-induced protein kinase but not by calmodulins.
    Katou S; Karita E; Yamakawa H; Seo S; Mitsuhara I; Kuchitsu K; Ohashi Y
    J Biol Chem; 2005 Nov; 280(47):39569-81. PubMed ID: 16183637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specificity of T-cell protein tyrosine phosphatase toward phosphorylated synthetic peptides.
    Ruzzene M; Donella-Deana A; Marin O; Perich JW; Ruzza P; Borin G; Calderan A; Pinna LA
    Eur J Biochem; 1993 Jan; 211(1-2):289-95. PubMed ID: 7678807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Src homology region 2 (SH2) domain-containing phosphatase-1 dephosphorylates B cell linker protein/SH2 domain leukocyte protein of 65 kDa and selectively regulates c-Jun NH2-terminal kinase activation in B cells.
    Mizuno K; Tagawa Y; Mitomo K; Arimura Y; Hatano N; Katagiri T; Ogimoto M; Yakura H
    J Immunol; 2000 Aug; 165(3):1344-51. PubMed ID: 10903736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The tyrosine phosphatase TC48 interacts with and inactivates the oncogenic fusion protein BCR-Abl but not cellular Abl.
    Mitra A; Sasikumar K; Parthasaradhi BV; Radha V
    Biochim Biophys Acta; 2013 Jan; 1832(1):275-84. PubMed ID: 23124138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Murine SHP-1 splice variants with altered Src homology 2 (SH2) domains. Implications for the SH2-mediated intramolecular regulation of SHP-1.
    Martin A; Tsui HW; Shulman MJ; Isenman D; Tsui FW
    J Biol Chem; 1999 Jul; 274(31):21725-34. PubMed ID: 10419485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B.
    Meng TC; Buckley DA; Galic S; Tiganis T; Tonks NK
    J Biol Chem; 2004 Sep; 279(36):37716-25. PubMed ID: 15192089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of the calmodulin-binding domain of recombinant calcium-independent phospholipase A2beta. implications for structure and function.
    Jenkins CM; Wolf MJ; Mancuso DJ; Gross RW
    J Biol Chem; 2001 Mar; 276(10):7129-35. PubMed ID: 11118454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus.
    Lorenzen JA; Dadabay CY; Fischer EH
    J Cell Biol; 1995 Nov; 131(3):631-43. PubMed ID: 7593185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.